Dirac eq gamma matrices question

copernicus1
Messages
98
Reaction score
0
In almost all the books on field theory I've seen, the authors list out the different types of quantities you can construct from the Dirac spinors and the gamma matrices, but I'm confused by how these work. For instance, if $$\overline\psi\gamma^5\psi$$ is a pseudoscalar, how can $$\overline\psi\gamma^\mu\psi$$ be a vector? Aren't gamma-5 and gamma-mu just different matrices? How do you get a vector out of the second operation?

Thanks!
 
Physics news on Phys.org
Have you seen proofs for these 2 results ? It's true that most books gloss over these things without the explicit calculations. I vaguely remember that the proofs for all the so-called <Dirac bilinears> are in Müller-Kirsten and Wiedemann's book on symmetries and supersymmetries. They contain about 100+ pages of calculations with spinors in 4D.
 
Gamma-5 and gamma-mu are indeed all matrices, BUT the four different gamma-mu represent the Dirac algebra, whereas gamma-5 is not an element of that representation - so that's where the difference must come in.
(If your question is about the number of components and the fact that really gamma-mu is just a single matrix, then what the authors mean is that the second quantity transforms as a *component* of a four-vector.)
 
In addition to transforming the spacetime coordinates, the Lorentz transformation also transforms the spinor components: ψ → Λψ, where Λ is a 4 x 4 matrix. For an infinitesimal transformation, Λ = I + ½εμνΣμν where Σμν = ½γμγν. It's their commutators with Σμν that determine the transformation properties of the Dirac covariants. For example, γμ → Λ-1γμΛ = γ'μ.
 
Last edited:
Aren't gamma-5 and gamma-mu just different matrices? How do you get a vector out of the second operation?
For that you will have to learn how dirac spinors transform under parity.Under parity transformation
ψ-γ5ψ(x,t)-ψ-γ0γ5γ0ψ(-x,t)=-ψ-γ5ψ(-x,t)
which shows that it has a pseudoscalar character.while ψ-γμψ is a lorentz vector which means
ψ-γμψ-Λμvψ--1x)γvψ(Λ-1x)
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top