Marco_84
- 173
- 0
Dirac equation and friends :)
I was playing with Dirac equations and deriving some usefull details,
Note sure for a calculation, is all the math right?
Beginning:
we require for a pure Lorentz trasf that the spinor field trasform linearly as:
\psi'(x')=S(\Lambda)\psi(x) (1)
where x'=\Lambda x and S(\Lambda) is a linear operator that we can write follow:
S(\Lambda)=exp(-\frac{i}{a}\sigma_{ab}\omega^{ab}) (2)
If we take the \dagger and use Dirac gammas on (1) we obtain the transformation law for the dagger spinor:
\psi'(x')^{\dagger}=\psi(x)^{\dagger}S(\Lambda)^{\dagger}
and using gamma zero we have:
\overline{\psi'(x')}=\overline{\psi(x)}\gamma^{0}S(\Lambda)^{\dagger}\gamma^{0}
Now what i want to show is that:
\gamma^{0}S(\Lambda)^{\dagger}\gamma^{0}=S^{-1}(\Lambda)
correct me in the following equalities if i make something wrong:
\gamma^{0}S(\Lambda)^{\dagger}\gamma^{0}=\gamma^{0}exp(\frac{i}{a}(\omega^{ab})^{\dagger}(\sigma_{ab})^{\dagger})\gamma^{0}=exp(\gamma^{0}\frac{i}{a}(\omega^{ab})^{\dagger}(\sigma_{ab})^{\dagger}\gamma^{0})
Now using the properties of gamma zero on the matrices:
\gamma_{0}^2=Id; \gamma_{0}\sigma_{ab}\gamma_{0}=(\sigma_{ab})^{\dagger}
we get to:
\gamma^{0}exp(\frac{i}{a}(\omega^{ab})^{\dagger}(\sigma_{ab})^{\dagger})\gamma^{0}=exp(\gamma^{0}\frac{i}{a}(\omega^{ab})^{\dagger}\gamma^{0}\gamma^{0}(\sigma_{ab})^{\dagger}\gamma^{0})=exp(\frac{i}{a}\sigma_{ab}\omega^{ab})\equiv S^{-1}(\Lambda)
The last follow from (2).
Am i correct??
thanks in advance.
marco
I was playing with Dirac equations and deriving some usefull details,
Note sure for a calculation, is all the math right?
Beginning:
we require for a pure Lorentz trasf that the spinor field trasform linearly as:
\psi'(x')=S(\Lambda)\psi(x) (1)
where x'=\Lambda x and S(\Lambda) is a linear operator that we can write follow:
S(\Lambda)=exp(-\frac{i}{a}\sigma_{ab}\omega^{ab}) (2)
If we take the \dagger and use Dirac gammas on (1) we obtain the transformation law for the dagger spinor:
\psi'(x')^{\dagger}=\psi(x)^{\dagger}S(\Lambda)^{\dagger}
and using gamma zero we have:
\overline{\psi'(x')}=\overline{\psi(x)}\gamma^{0}S(\Lambda)^{\dagger}\gamma^{0}
Now what i want to show is that:
\gamma^{0}S(\Lambda)^{\dagger}\gamma^{0}=S^{-1}(\Lambda)
correct me in the following equalities if i make something wrong:
\gamma^{0}S(\Lambda)^{\dagger}\gamma^{0}=\gamma^{0}exp(\frac{i}{a}(\omega^{ab})^{\dagger}(\sigma_{ab})^{\dagger})\gamma^{0}=exp(\gamma^{0}\frac{i}{a}(\omega^{ab})^{\dagger}(\sigma_{ab})^{\dagger}\gamma^{0})
Now using the properties of gamma zero on the matrices:
\gamma_{0}^2=Id; \gamma_{0}\sigma_{ab}\gamma_{0}=(\sigma_{ab})^{\dagger}
we get to:
\gamma^{0}exp(\frac{i}{a}(\omega^{ab})^{\dagger}(\sigma_{ab})^{\dagger})\gamma^{0}=exp(\gamma^{0}\frac{i}{a}(\omega^{ab})^{\dagger}\gamma^{0}\gamma^{0}(\sigma_{ab})^{\dagger}\gamma^{0})=exp(\frac{i}{a}\sigma_{ab}\omega^{ab})\equiv S^{-1}(\Lambda)
The last follow from (2).
Am i correct??
thanks in advance.
marco