MHB Direct Products of Modules .... Bland Proposition 2.1.1 .... ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Modules
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Paul E. Bland's book: Rings and Their Modules and am currently focused on Section 2.1 Direct Products and Direct Sums ... ...

I need help with some aspects of the proof of Proposition 2.1.1 ...

Proposition 2.1.1 and its proof read as follows:
View attachment 8030

In the statement of the above proposition we read the following:

" ... ... for every $$R$$-module $$N$$ and every family $$\{ f_\alpha \ : \ N \rightarrow M_\alpha \}_\Delta$$ of $$R$$-linear mappings there is a unique $$R$$-linear mapping $$f \ : \ N \rightarrow \prod_\Delta M_\alpha$$ ... ... "The proposition declares the family of mappings $$\{ f_\alpha \ : \ N \rightarrow M_\alpha \}_\Delta$$ as $$R$$-linear mappings and also declares that $$f$$ (see below for definition of $$f$$!) is an $$R$$-linear mapping ...

... BUT ...

I cannot see where in the proof the fact that they are $$R$$-linear mappings is used ...

Can someone please explain where in the proof the fact that the family of mappings $$\{ f_\alpha \ : \ N \rightarrow M_\alpha \}_\Delta$$ and $$f$$ are $$R$$-linear mappings is used ... basically ... why do these mappings have to be $$R$$-linear ... ?
Help will be much appreciated ...

Peter======================================================================================The above post mentions but does not define $$f$$ ... Bland's definition of $$f$$ is as follows:
View attachment 8031Hope that helps ...

Peter***EDIT***

In respect of $$f$$ it seems we have to prove $$f$$ is an $$R$$-linear mapping ... but then ... where is this done ...
 
Last edited:
Physics news on Phys.org
Bland defines the map $f:N \longrightarrow \prod_\Delta M_\alpha$ by saying that $f$ is product of the family of mappings $f_\alpha:N \longrightarrow M_\alpha$. YOU have to fill in the proof that $f$ is an R-linear map, by using the fact that $f_\alpha$ is a R-linear maps for all $\alpha \in \Delta$.

The mappings $f_\alpha:N \longrightarrow M_\alpha$ have to be R-maps, because $f$ has to become an R-map and because $\pi_\alpha \circ f = f_\alpha$ for all α∈Δ.
 
Last edited:
steenis said:
Bland defines the map $f:N \longrightarrow \prod_\Delta M_\alpha$ by saying that $f$ is product of the family of mappings $f_\alpha:N \longrightarrow M_\alpha$. YOU have to fill in the proof that $f$ is an R-linear map, by using the fact that $f_\alpha$ is a R-linear maps for all $\alpha \in \Delta$.

The mappings $f_\alpha:N \longrightarrow M_\alpha$ have to be R-maps, because $f$ has to become an R-map and because $\pi_\alpha \circ f = f_\alpha$ for all α∈Δ.
Hi Steenis ... thanks for your help ...

You write:

" ... ... YOU have to fill in the proof that $f$ is an R-linear map, by using the fact that $f_\alpha$ is a R-linear maps for all $\alpha \in \Delta$. ... ... "

Yes ... of course you're right ...

BUT ... need some help ...We need to show $$f$$ is an $$R$$-linear map (homomorphism) ...

We are given that the $$f_\alpha$$ are $$R$$-linear maps, and we know that the projections $$\pi_\alpha$$ are $$R$$-linear maps ...

We also know that $$\pi_\alpha f = f_\alpha$$ for each $$\alpha \in \Delta$$ ... ... ... ... ... (1)

Now ... we know that if $$f$$ is an $$R$$-linear mapping then (1) holds true but ...

... how do you prove that f must necessarily be an $$R$$-linear map ... ...... can you help ... ... ?

Peter
 
To show that $f:N \longrightarrow \prod_\Delta M_\alpha$ is an R-linear map, use the definition of R-linear map. So you have to show that:

$f(x+y) = f(x) + f(y)$ for $x, y \in N$ and
$f(xr) = f(x)r$ for $x \in N$ and $r \in R$ (in case of a right R-module).

$f$ is defined as the product of the family of mappings $f_\alpha:N \longrightarrow M_\alpha$. So $f(x)=(f_\alpha(x))_{\alpha \in \Delta}$ and $f(y)=(f_\alpha(y))_{\alpha \in \Delta}$ for $x, y \in N$ by definition.

Thus $f(x+y) = (f_\alpha(x+y))=(f_\alpha(x)+f_\alpha(y))=(f_\alpha(x))+(f_\alpha(y))=f(x)+f(y)$.

You can do the second part.
 
I am sorry, Peter, did NOT ask me to prove that $f$ is R-linear, you DID ask me why $f$ is necessarily R-linear, given that $\pi_\alpha \circ f = f_\alpha$ in which $\pi_\alpha$ and $f_\alpha$ are R-linear.

I think this is why, take $x, y \in N$ then $\pi_\alpha f(x+y) = \pi_\alpha (f_\alpha(x+y)) = f_\alpha(x+y) = f_\alpha(x) + f_\alpha(y)$.

From this it follows $(f_\alpha(x+y)) = (f_\alpha(x)) + (f_\alpha(y))$ and $f(x+y)=f(x)+f(y)$. (you can do the second rule).
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top