Is the Direct Sum of Two Nonzero Rings Ever an Integral Domain?

kathrynag
Messages
595
Reaction score
0
Show that the direct sum of 2 nonzero rings is never an integral domain


I started by thinking about what a direct sum is
(a,b)(c,d)=(ac,bd)
(a,b)+(c,d)=(a+c,b+d)
We have an integral domain if ab=0 implies a=0 or b=0
 
Physics news on Phys.org
Hint: The first property is pretty relevant. The second not so much.
 
So we look at (a,b)(c,d) with (a,b) not zero and (c,d) not zero. Then multiplying together will never result in 0
 
What about a=d=1, and b=c=0? Then you get (1,0)*(0,1) = (0,0).
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top