MathewsMD said:
It is first year Calculus 1000. It is the first semester and next semester will be Calculus II. I am undecided right now but leaning towards Medical Physics, and there are a lot of different students (science and business namely).
Thank you. This helps me help you.
I asked my professor to clarify when a function is not integrable and the response from her was (with as little paraphrasing as possible): the definite integral cannot be calculated if there is at least one discontinuity in the interval of the upper and lower limits. The indefinite integral cannot be taken if there are infinite discontinuities in the graph.
I would characterize both of those statements as false. I've already given an example of a function with lots of discontinuities for which every definite integral can be calculated. ##f(x)=\sec^2x## has infinitely many discontinuities, and we can characterize all of its antiderivatives. If you replace the word "discontinuity" with "asymptote" then the first statement becomes true, but the second one is still false.
Giving your instructor the benefit of the doubt that she really knows the material and understood the question that you were asking, I would say that either (a) she was giving you the "freshman calculus" version of the answer (i.e. the one that allows you to to "correctly" answer the questions presented to you in the class) without stipulating that she's lying to you just a little bit or (b) you misheard or misinterpreted her response.
My main concerns are:
1) Does discontinuity specifically mean where there is a break in the graph at some x value, BUT it is still defined for the x value? Or, does it mean where there is a break in the graph at some x value, BUT it is NOT defined for the x value (ex. vertical asymptote)? Or is it both?
2) Why must there be infinite discontinuities and not at least one for indefinite integral to be not be considered integrable? I keep hearing that we only consider it for the domain that the function is defined for, but wouldn't we require a new calculation for an exact answer for this? For definite integrals, if there is one discontinuity, it is not integrable. I don't understand why this doesn't hold true for indefinite integrals. I guess I have yet to see (or at least fully understand) any proofs that can specifically answer my question at the level of math I know currently.
(1) You should have a working definition for "##f ## is continuous at ##a##"; something along the lines of "##f## is continuous at ##a## if and only if ##\lim_{x\rightarrow a}f(x)=f(a)##". There are three things stipulated here. (a) That ##\lim_{x\rightarrow a}f(x)## exists, (b) that ##f(a)## makes sense (i.e. ##f## is defined at ##a##, and (c) that these two numbers are equal. "##f## is discontinuous at ##a##" just means that one or more of these three conditions fails.
"break in the graph at some x value, BUT it is still defined for the x value" is when (c) (and possibly (a)) fails. "break in the graph at some x value, BUT it is NOT defined for the x value" is when (b) (and possibly (a)) fails and (c) doesn't even make sense. So they are both examples of types of discontinuities. An asymptote is a specific (and relatively nice) case when (a) fails. There are more exotic cases of discontinuity that really don't properly correspond to any kind of picture that can be drawn, and these cases are usually considered to be the most interesting.
(2) Again, I would characterize your understanding here to be false. More importantly, I really don't think it's all that necessary for you to be worrying about that right now. It's great that you're curious, but in my opinion you should focus on mastering the basics first (especially since finals are coming up soon). Regardless of your academic path, the material in a first year calculus course like the one that you're taking is meant to serve a springboard to learning about the more interesting stuff like what we're talking about here. Understanding things like limits, continuity, derivatives, Riemann sums, definite integrals, etc.
beyond the computations is key towards grasping the more interesting and exotic ideas, because most of the truly interesting stuff (in my opinion) is beyond the computations.
For what it's worth, I think it would be very difficult to even state the full versions of the theorems that address your concerns in terms that you you could understand at your current level. That's not a knock on your abilities, just a statement on where you are along the path.