Jncik
- 95
- 0
Homework Statement
find the Fourier transform of the function
<br /> x(t)=\left\{\begin{matrix}<br /> &25 - \frac{25}{8}|t-10| &for &|t-10|<8 \\ <br /> &0 &for& |t-10|>8<br /> \end{matrix}\right.<br />
Homework Equations
The Attempt at a Solution
we know that
<br /> g(t)=\left\{\begin{matrix}<br /> &1-|t| &for &|t|<1 \\ <br /> &0 &for& |t|>1<br /> \end{matrix}\right.\leftrightarrow X(j\omega) =\left\{\begin{matrix}<br /> &\begin{bmatrix}<br /> {\frac{\frac{sin(\omega)}{2}}{\frac{\omega}{2}}}<br /> \end{bmatrix}^{2} &for &|\omega|<1 \\<br /> &0 &for& |\omega|>1<br /> \end{matrix}\right. <br />
we can see that x(t) = 25g(\frac{1}{8} (t-10))
now
25g(t-10) \leftrightarrow 25 X(j \omega) e^{-j 10 \omega}
and
25g(1/8(t-10)) \leftrightarrow \frac{25}{8} X(j\frac{\omega}{8}) e^{-j 10 \frac{\omega}{8}}
is this correct?
thanks in advance
Last edited: