JackRyan
- 1
- 0
Discrete Math: prove B intersection A = A, given A-B = null set
1. Problem Statement:
Prove B \cap A = A, given A-B = ∅ (empty set)
xε(B\capA) => xεB and xεA => Logic given A-B = ∅ => xεA
I tried using A-B = A\cap!B for xε(A\cap!B)=∅ => xεA and x not in !B or x not in A and Xε!B
I am unsure how to fill in that logic section and prove that B\capA=A
1. Problem Statement:
Prove B \cap A = A, given A-B = ∅ (empty set)
The Attempt at a Solution
xε(B\capA) => xεB and xεA => Logic given A-B = ∅ => xεA
I tried using A-B = A\cap!B for xε(A\cap!B)=∅ => xεA and x not in !B or x not in A and Xε!B
I am unsure how to fill in that logic section and prove that B\capA=A
Last edited: