Discrete Random Vectors vs. Continuous Random Vectors

  • I
  • Thread starter zr95
  • Start date
  • #1
25
1
Given a continuous random vector (X,Y) with a joint density function
In order to check whether it is indeed a joint density ƒ(x,y) the method is to check if ∫∫ƒ(x,y)dxdy=1 where the integrals limits follow the bounds of x and y.

However, is it the case that if given an arbitrary discrete random vector (X,Y) with a joint density function:
In order to check whether it is indeed a joint density ƒ(x,y) the method is to check if ∑∑ƒ(x,y)=1 where the summations are, given bounds, for all those x and y.

Or are they both the ∫∫ f(x,y)dxdy=1? I know further on for finding the expectation and such that discrete uses the summation and continuous takes the integral but not sure if it differs in the first step or why it does.
 

Answers and Replies

  • #2
mathman
Science Advisor
8,046
535
The sum can be looked at as an integral using delta functions. Is that what you are aiming for?
 
  • #3
chiro
Science Advisor
4,797
133
Technically the measure changes and the requirements for axiomatic probability are quite precise - and often difficult to follow.

If you are interested in this then you can find it in a graduate (or "pure") probability course that involves measure theory, sigma algebras, and the use of set theory to make probability rigorous over a variety of spaces (which as it turns out - is quite difficult).

A course on financial calculus (as a graduate offering) will cover this in one form or another.
 

Related Threads on Discrete Random Vectors vs. Continuous Random Vectors

  • Last Post
Replies
3
Views
2K
  • Last Post
Replies
9
Views
1K
  • Last Post
Replies
5
Views
2K
  • Last Post
Replies
1
Views
2K
  • Last Post
Replies
1
Views
3K
  • Last Post
Replies
3
Views
2K
Replies
1
Views
1K
Replies
6
Views
14K
Replies
9
Views
4K
Replies
3
Views
866
Top