Disproving Isomorphism of G/N & G'/N': Counterexample Needed

  • Thread starter Thread starter zcdfhn
  • Start date Start date
  • Tags Tags
    Normal
zcdfhn
Messages
23
Reaction score
0
Prove or disprove:

Suppose N is a normal subgp of G and N' is a normal subgp of G'. If G is isomorphic to G' and N is isomorphic to N' does that mean that G/N is isomorphic to G'/N'?

I was trying to work out a proof until my professor told us to think of subgroups of the integers when doing this problem. So now I'm trying to disprove it through a counterexample. I have been stuck on this question for a while and I would appreciate any help.

Thank you.
 
Physics news on Phys.org
Hint: { ... -4, -2, 0, 2, 4 ... } is isomorphic to { ... -2, -1, 0, 1, 2, ... }.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top