Dissociation degree of polyprotic acids

AI Thread Summary
The discussion centers on the application of the Henderson-Hasselbalch equation to calculate the dissociation degree of monoprotic acids and its potential use for polyprotic acids. The formula derived from the equation allows for the calculation of the ratio of the concentrations of the acid and its conjugate base using pH and pKa values. Participants confirm that this method is valid for polyprotic acids as well, emphasizing that the equation is a rearrangement of the dissociation constant definition. Additionally, the formula is highlighted as useful in analyzing endpoint detection accuracy in acid/base titrations, where similar calculations are applied.
ComptonFett
Messages
8
Reaction score
0
I can quickly calculate the dissociation degree of a monoprotic acid with the formula below (derived from the Hendersson-Hasselbach equation). I don't see any reason why this would not work also for polyprotic acids but I would like to confirm that it does. I would appreciate it if someone could confirm/disconfirm this. Thanks.

\begin{align}
& pH=pKa+\log \frac{A^{-}}{HA} \\
& \log \frac{A^{-}}{HA}=pH-pKa \\
& \frac{A^{-}}{HA}=10^{pH-pKa} \\
\end{align}
 
Chemistry news on Phys.org
Yes it will work - pH and pKa are enough to calculate ratio of acid and conjugate base concentrations.

As Henderson-Hasselbalch equation is just a rearranged form of the dissociation constant definition, formula you derived is also just a rearranged form of the dissociation constant definition. It is quite useful in the analysis of the endpoint detection accuracy (see discussion of acid/base titration indicators where the same formula is used).
 
Cheers!
 
It seems like a simple enough question: what is the solubility of epsom salt in water at 20°C? A graph or table showing how it varies with temperature would be a bonus. But upon searching the internet I have been unable to determine this with confidence. Wikipedia gives the value of 113g/100ml. But other sources disagree and I can't find a definitive source for the information. I even asked chatgpt but it couldn't be sure either. I thought, naively, that this would be easy to look up without...
I was introduced to the Octet Rule recently and make me wonder, why does 8 valence electrons or a full p orbital always make an element inert? What is so special with a full p orbital? Like take Calcium for an example, its outer orbital is filled but its only the s orbital thats filled so its still reactive not so much as the Alkaline metals but still pretty reactive. Can someone explain it to me? Thanks!!
Back
Top