Distance between two parallel lines

  • Thread starter Thread starter lubricarret
  • Start date Start date
  • Tags Tags
    Lines Parallel
lubricarret
Messages
34
Reaction score
0

Homework Statement



Determine the distance between the parallel planes –4x–4y+1z=–1 and 8x+8y–2z=12

Homework Equations



Proj_n_v = ((vn)/(nn))n

The Attempt at a Solution



I thought I understood how to do this, but I am not getting a correct answer for it. What I did was:
I made the equations to be:
–4x–4y+1z=–1 and
–4x–4y+1z=–12
and therefore got the normal to these two planes to be: (-4,-4,1)
Then, I took a point P (0,0,-1) from plane 1. Then, took a point A on plane 2 to be (0,0,-12).

From these two points, I got vector AP = (0,0,11).

I projected vector AP onto the normal... so
proj_n_AP = (((AP)n)/(nn))n

And got the result: (11/33)[(-4,-4,1)]

I then got the distance by ll(11/33)[(-4,-4,1)]ll to be (11/33)sqrt33

Am I doing this totally wrong? Thanks!
 
Physics news on Phys.org
No, you are doing it right. You just made a booboo. Dividing 8x+8y–2z=12 by -2 gives –4x–4y+1z=–6, doesn't it?
 
Aa! Can't believe I made such a stupid mistake. Thanks!

So, the answer would just be (5/33)(sqrt33), correct?...

As I would keep P as (0,0,-1), but make A (0,0,-6); and get the vector AP = (0,0,5)

So, projecting AP onto the normal, and then getting the distance of the projection would result in: (5/33)(sqrt33)
 
That seems right.
 
But why bother with projecting? You know that a point on plane 1 is (0, 0, -1) and that the normal vector is given by <-4, -4 , 1> so a line through that point, normal to the plane is x= -4t, y= -4t, z= -1+ t. Where does that line intersect plane 2? The distance between those two points is the distance between the planes.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top