Distance to traveled to reach 0m/s not matter in impulse?

AI Thread Summary
The discussion revolves around calculating the impulse received by a player catching a rebounding ball. The correct impulse is determined using the change in momentum formula, yielding 0.456 kg⋅m/s. The initial confusion arose from using kinematic equations to find acceleration and time, leading to a different impulse calculation that was incorrect. It was clarified that the distance traveled by the player's hand does not affect the impulse calculation in this scenario, as the impulse is solely based on the change in momentum. The conversation emphasizes the importance of avoiding unnecessary assumptions about deceleration profiles in similar problems.
jb007
Messages
18
Reaction score
0

Homework Statement


I figured out this homework problem, after many tries, but I'm confused about the correct final answer. Here's the question:
The rebounding ball, mass of 0.06 kg, traveling horizontally at 7.6 m/s, is caught by a player who brings it to rest. During the process, her hand moves back 0.60 m. What is the impulse received by the player?

Homework Equations


I = Δp
I = FΔt
F = ma

The Attempt at a Solution


So in the end I just used I = Δp. I did I = (mvf) - (mvi) = (0.06)(0) - (0.06)(-7.6) = 0.456 kg⋅m/s.
Before I was using the kinematics equations to solve for the acceleration of the ball when it slowed down from 7.6 m/s to 0 m/s in the 0.6 m the player's hand moved when catching it. Then I used the acceleration to get the time taken for this process. Then I plugged the acceleration value and the mass of the ball into F = ma to find the force on the ball by the player's hand. Finally, I plugged in this force into I = Favg.Δt to find the impulse. But doing so I got 0.493 N⋅s, which was wrong.

Why is the answer solved without taking into account the distance traveled by the player's hand?
 
Physics news on Phys.org
Your Δp calculation is fine. The error is in the checking procedure (I do get .456 that way).
Can you show the checking calculation in detail ?
 
With the kinematic equations, this is what I did:
vf2 = vi2 - 2a(xf-xi)
So vi2 = 7.62 = 57.76 m/s.
And vf2 = 02 = 0 m/s.
xf - xi = 0.6 m.

Solving for a:
-57.76 = -2a(0.6)
a = 48.133 m/s/s
a = -48.133 m/s/s because it is in the opposite direction of the ball's velocity.

With a, I find the time it takes to travel the 0.6 m.
So I use xf = xi + vit + 0.5at2
So xf - xi = 0.6 m.

0.6 = 7.6t - 0.5(48.133)t2
0 = -24.0665t2 + 7.6t - 0.6

Solving the quadratic, I get 0.1575 and 0.1583 for t.

Using F = ma, I solve for the force on hand by ball:
F = (0.06)(-48.133) = -2.88798N

And the impulse would be FΔt, (-2.88798)(0.1575) = 0.455 Ns
Using the other value for t, I get (-2.88798)(0.1583) = 0.457 Ns

Oh, well I guess I did make a mistake somewhere my first time. The numbers are pretty close to 0.456. But if you used the quadratic formula, how would you know which value to use? They each produce a different result.
 
jb007 said:
With the kinematic equations, this is what I did:
vf2 = vi2 - 2a(xf-xi)
So vi2 = 7.62 = 57.76 m/s.
And vf2 = 02 = 0 m/s.
xf - xi = 0.6 m.

Solving for a:
-57.76 = -2a(0.6)
a = 48.133 m/s/s
a = -48.133 m/s/s because it is in the opposite direction of the ball's velocity.

With a, I find the time it takes to travel the 0.6 m.
So I use xf = xi + vit + 0.5at2
So xf - xi = 0.6 m.

0.6 = 7.6t - 0.5(48.133)t2
0 = -24.0665t2 + 7.6t - 0.6

Solving the quadratic, I get 0.1575 and 0.1583 for t.

Using F = ma, I solve for the force on hand by ball:
F = (0.06)(-48.133) = -2.88798N

And the impulse would be FΔt, (-2.88798)(0.1575) = 0.455 Ns
Using the other value for t, I get (-2.88798)(0.1583) = 0.457 Ns

Oh, well I guess I did make a mistake somewhere my first time. The numbers are pretty close to 0.456. But if you used the quadratic formula, how would you know which value to use? They each produce a different result.
They really cannot produce a different result. Try doing it all algebraically, not using any actual numbers. You should find you get the same algebraic expression. Any numerical difference you are seeing must be from arithmetic error or rounding error.
Note also that your method using distance necessarily makes an assumption about the deceleration profile - constant deceleration in this case. It doesn't matter because it turns out to be irrelevant in this problem, but you should be wary of making such assumptions generally.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Replies
19
Views
2K
Replies
4
Views
4K
Replies
6
Views
6K
Replies
13
Views
8K
Replies
3
Views
3K
Replies
1
Views
2K
Replies
2
Views
2K
Back
Top