ineedmunchies
- 42
- 0
Homework Statement
F = \frac{<b>r</b>}{r}
Find divF
and curl F
Homework Equations
r = x\widehat{i} + y\widehat{j} + z\widehat{k}
r = \sqrt{(x^{2} + y^{2} + z^{2})}
The Attempt at a Solution
F = \frac{x}{(\sqrt{x^{2} + y^{2} + z^{2}})}\widehat{i} + \frac{y}{(\sqrt{x^{2} + y^{2} + z^{2}})}\widehat{j} + \frac{z}{(\sqrt{x^{2} + y^{2} + z^{2}})}\widehat{k}
div F = \frac{\partial}{\partial x} (x(x^{2} + y^{2} + z^{2})^{\frac{-1}{2}} + \frac{\partial}{\partial y}(y(x^{2} + y^{2} + z^{2})^{\frac{-1}{2}} + \frac{\partial}{\partial z}(z(x^{2} + y^{2} + z^{2})^{\frac{-1}{2}}
Take the partial derivative of x first.
let u = x^{2} + y^{2} + z^{2}
and a = xu^{2}
\frac{\partial u}{\partial x} = 2x
\frac{\partial a}{\partial u} = \frac{-1}{2}xu^{\frac{-3}{2}}
\frac{\partial a}{\partial x} = -x^{2}u^{\frac{-3}{2}}
= -x^{2}(\frac{1}{\sqrt{(x^{2} + y^{2} + z^{2})}})^{3}
The other derivatives would give similar answers, and the final answer would be
-\frac{x^{2}}{r^{3}}-\frac{y^{2}}{r^{3}}-\frac{z^{2}}{r^{3}}
This is apparently the incorrect answer, can anybody help?