ClaraOxford
- 6
- 0
How do you prove that the energy-momentum tensor is divergence-free?
∂μTμν=0
∂μTμν=0
Dickfore said:use the fact that:
<br /> \partial_\nu F^{\mu \nu} = J^\mu, \partial_{\mu} F^{\nu \rho} + \partial_{\nu} F^{\rho \mu} + \partial_{\rho} F^{\mu \nu} = 0, \; F^{\mu \nu} = -F^{\nu \mu}<br />
Sam Gralla said:It won't be divergence-free if you use those equations. Instead use the vacuum Maxwell equations (above with J=0). Alternatively use the above to find the divergence to equal F_{ab}J^b (up to sign).