Saladsamurai
- 3,009
- 7
Homework Statement
This is from a fluid mechanics text. There are no assumptions being made (i.e., no constants):Show that
\frac{\partial{}}{\partial{t}}\int_V e\rho \,dV +<br /> \int_S e\rho\mathbf{v}\cdot\mathbf{n}\,dA<br /> = <br /> \rho\frac{De}{Dt}\,dV\qquad(1)<br />
where e and \rho are scalar quantities and we the define the operator
\frac{D}{Dt} \equiv \frac{\partial{}}{\partial{t}} + \mathbf{V}\cdot\nabla\qquad(2)
Homework Equations
Divergence theorem:
\int_S\mathbf{n}\cdot\mathbf{F}\,dA = \int_V \nabla\cdot\mathbf{F}\,dV \qquad(3)
The Attempt at a Solution
I tried to use (3) on the surface integral in (1):
\int_S e\rho\mathbf{v}\cdot\mathbf{n}\,dA = <br /> \int_S (e\rho\mathbf{v})\cdot\mathbf{n}\,dA \qquad(4)
= \int_V\nabla\cdot(e\rho\mathbf{V})\,dV \qquad(5)
Now in (5) I used the vector identity: \nabla\cdot (\phi\mathbf{F}) = \mathbf{F}\cdot\nabla\phi + \phi\nabla\cdot\mathbf{F} \qquad(6) however, I am not sure if the way I did it was legal. I let \phi = e\rho. Is that a legal move? That is, is this true:
<br /> \nabla\cdot (e\rho\mathbf{V}) = e\rho\nabla\cdot\mathbf{V} + \mathbf{V}\cdot\nabla e\rho<br />
?