Question involving the Divergence Theorem and Surface Integrals

lys04
Messages
144
Reaction score
5
Homework Statement
Divergence theorem problem
Relevant Equations
Divergence theorem, surface integrals
Is this correct? Ignore my bad drawings
IMG_0402.jpeg
IMG_0399.jpeg
IMG_0401.jpeg
 
Physics news on Phys.org
It looks fine, but in the future please do not simply post images. The forum has a perfectly functioning LaTeX implementation, use it! If you just post a screenshot of your compiled math there is no possibility for us to quote particular sections of your post and it is less readable.
 
Will do! Thanks
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top