Do All Lower Energy States Exist When n=3 in an Infinite Potential Well?

victoria13
Messages
7
Reaction score
0
ok so i have a question on infinite potential wells... if you have the energy state when n=3, does that mean that you have to have the energy state when n=2 and n=1?

Ok basically the Q we are given is:

A particle of mass m is trapped in an infi nitely deep one-dimensional potential well between x = 0 and x = a, and at a time t = 0 is described by the wave function

psi(x,t=0) = sin(pix/a)cos(2pix/a)

(i) What possible values may be found for the energy of the particle?
(ii) What is the expectation (or average) value of the energy of the particle?
(iii) Give an expression showing the time dependence of the wave function, psi(x,t).
[Hint: Use sinAcosB = 1/2(sin(A + B) + sin(A-B))].

so when i use the hint and find the equation in terms of just sin i get

psi(x) = 0.5sin(3pix/a) + 0.5sin(-pix/a)

so does this mean that there is just the 3rd energy state, or the third and first, or all 3?

thanks
 
Physics news on Phys.org
The particle is in a superposition of the n=3 state and the n=1 state.
 
so the energies are when n=3 and n=1?
 
Yes, the measurement can only result in energies of states which you have some chance of finding the particle in.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top