zynan
- 1
- 0
I was told by my teacher that fire is plasma and that plasma can be controlled by magnets. Does that mean it is possible to effectively use magnets to control fire?
berkeman said:Okay folks, the next post better have some pointers to some peer-reviewed journal articles on this, or the responses will be deleted as unsubstantiated claims. It shouldn't be that hard to look up...
ghoshg said:I would like to know whether fire should be considered as 'plasma phase' of matter ?
DJDAudio said:In this experiment I have a 15,000 Watt X ray transformer running at 50KV DC through the fire to the ring of the burner as ground.
I was able to manipulate the shape of the fire by changing the voltage and current characteristics.
So this is an interesting result, What do you all think is going on?
Happy to answer any questions about my rig.
I think it would be interesting if you can post a better write-up of the test, kit layout, controls, images with flow rates (albeit arbitrary units like 'angle of valve setting', if you aren't using a mass flow device), &c.. Also more info on your power supply and how you come to conclude you have a 50kV discharge. Are we looking at a PSU pulled down to quite low volts with a 'high' current, or otherwise how does the presence of the flame affect the conductance/arcing in that region.DJDAudio said:I was able to manipulate the shape of the fire by changing the voltage and current characteristics.
Drakkith said:I'd say you were ionizing the air and fire due to the 50,000 volts.
cmb said:I think it would be interesting if you can post a better write-up of the test, kit layout, controls, images with flow rates (albeit arbitrary units like 'angle of valve setting', if you aren't using a mass flow device), &c.. Also more info on your power supply and how you come to conclude you have a 50kV discharge. Are we looking at a PSU pulled down to quite low volts with a 'high' current, or otherwise how does the presence of the flame affect the conductance/arcing in that region.
The second image does look interesting, but not enough 'control' information here to begin making second guesses at what we are looking at.
Edgardo said:- In this textbook (page 468) they describe how a combustion flame changes in a magnetic field.
- This here describes how neodymium magnets deflect a candle flame. (Though I am a little concerned if this actually happens: video of a spoon "pushing" a flame)
DJDAudio said:This was a one in a million shot, this is at the exact moment the arc conducts through the flame and the huge current inrush throws the flame violently, so much in fact, you can still see the electric arc that is going to nothing on the left side.
https://fbcdn-sphotos-a.akamaihd.net/hphotos-ak-snc6/190506_10150137124513291_519458290_6399114_2184682_n.jpg
truman said:How much of this effect can be accounted for by rapidly heated air expanding around the arc and disrupting the flame?
DJDAudio said:Also interesting effect, while the caps where charging the fire would 'list' or slightly lean as if attracted to the coil, then on fire, it would move abruptly in the opposite direction.
negitron said:No. Even in fires which are hot enough to produce plasmas, the flames are essentially neutrally charged--although the electrons are separated from their nucleii, they are still more or less homogeneously mixed with them, so the net charge is zero. Only plasmas which have had their charges separated (such as by an electric field, as in a plasma TV) can be affected by electric or magnetic fields on a macroscopic scale.
Teiwaz said:Ok so i took over 30 matches to run a test, i placed two magnets on either side of a standard box wood match, near the base of the match facing one another ,
Teiwaz said:Ok so i took over 30 matches to run a test, i placed two magnets on either side of a standard box wood match, near the base of the match facing one another , The match was held with a stationary tweezer like structure, and when the fire reached the area of the magnet it died out or in some cases, reversed the flame direction. I also did a few tests where the matches did not have magnets, in which case the entire match in all cases were consumed. What this means i do not know.. but i found it interesting.. I assumed because the magnet might be a conductor there could have been a possibility of heat transfer... but wasnt sure. either that or the magnets actually did stop the flame from burning the entire match in which case I am interested to find out what that means...
oh and i took four magnets and placed them on the match and noticed i could actually box in the flame well, until the wood inbetween the magnets was no longer able to burn.