Young physicist said:
As far as I know, a object will experience time slower when its speed is close to the speed of light.
But photons themselves moves at the speed of light, does that mean that they experience no time?
Notwithstanding the very valid issues already posted, it is possible to answer this question in the spirit in which it was asked.
Although you cannot be accelerated to the speed of light, you can, in theory, be accelerated to speeds which approach the speed of light.
So we can talk about what would happen as you reach speeds of about 0.999999999c (relative to Earth). From a Earth-bound observer, your clock will have essentially stopped and your relativistic mass would have increased enormously. If your destination was 1000 light-years away, you will be observed to arrive there in roughly 1000 years, but your clock will have advanced by only a couple of weeks.
From your perspective, you will have completed the journey in only weeks. But wouldn't that make it seem as though, from your point of view, you were traveling at a speed much faster than light? It won't because from your point of view, the entire universe would appear to be foreshortened. By your measurement, your distance traveled would be on the order of the diameter of the solar system.
So what would a photon see?
First, it doesn't have time to see anything. Even if it had a clock, it would never tick. This is why neutrinos, that seem to be able to change while travelling, are determined to be traveling at something less than the speed of light.
Second, from the photons perspective, the starting and ending points are coincident. It travels a distance of zero in zero time.
Third, photons don't really travel like that. They follow quantum mechanical rules that defy the notion of a straight path from a source point to a destination point.