Does a Zero Wronskian Imply Linear Dependence for Smooth Functions?

  • Thread starter Thread starter Bipolarity
  • Start date Start date
Bipolarity
Messages
773
Reaction score
2
Suppose I have some functions ## \{ y,y_{1},y_{2},...y_{n} \} \subset C^{∞} ## and suppose I know that the Wronskian of these functions is 0. Then can I conclude that these functions are linearly dependent?

Certainly this need not be true for an arbitrary set of functions, but it appears that it is true for analytic functions. My knowledge of these functions is very limited so I won't pursue it much, but are functions in ## C^{∞} ## considered analytic?

Thanks for the clarification.

BiP
 
Physics news on Phys.org
Bipolarity said:
Suppose I have some functions ## \{ y,y_{1},y_{2},...y_{n} \} \subset C^{∞} ## and suppose I know that the Wronskian of these functions is 0. Then can I conclude that these functions are linearly dependent?

Certainly this need not be true for an arbitrary set of functions, but it appears that it is true for analytic functions. My knowledge of these functions is very limited so I won't pursue it much, but are functions in ## C^{∞} ## considered analytic?

Thanks for the clarification.

BiP
Functions in ##C^{\infty}## are considered smooth, but not necessarily analytic. See here for details.

If the Wronskian is 0, the functions are not necessarily linearly dependent. For example, consider ##x^2## and ##x|x|##, the classical example given by Peano. Their Wronskian is 0, but they are clearly independent in any neighborhood of 0.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top