Does anyone know if this is true [itex]A \bigcap B^{c} = \emptyset

  • Thread starter Thread starter glebovg
  • Start date Start date
glebovg
Messages
156
Reaction score
0
Does anyone know if this is true A \bigcap B^{c} = \emptyset \Leftrightarrow A \bigcup B^{c} = U ?
 
Physics news on Phys.org


It's obviously false. You should readily be able to find a counter example even for U being a set of cardinality 3.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
1
Views
1K
Replies
1
Views
2K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
18
Views
3K
Replies
13
Views
2K
Back
Top