Does cartesian velocity contribute to Lat Long conversion?

AI Thread Summary
The discussion centers on whether incorporating velocity data into a 5D Cartesian system enhances the precision of converting to latitude, longitude, and altitude. It is clarified that the precision of spherical coordinates is primarily determined by the accuracy of the corresponding Cartesian coordinates, and speed does not impact this conversion. The conversation suggests that while velocity can help approximate a moving object's position over time, it does not necessarily improve the precision of the conversion itself. The complexities of transforming velocity into spherical coordinates are acknowledged, indicating that such transformations can be less precise over time compared to Cartesian coordinates. Overall, the inclusion of velocity in the conversion process does not significantly enhance accuracy, particularly for non-trivial motions.
k80sg
Messages
4
Reaction score
0
We understand that Lat Long Alt can be derived from 3D Cartesian (X,Y,Z) but does a 5D Cartesian (X, Y, Z, Vx, Vy) does the extra mile to provide a more precise conversion to Lat Long Alt with the additional velocity data?
 
Physics news on Phys.org
Welcome to PF.

Your question does not really make sense to me. The precision of the spherical coordinates of a point are determined by the precision of the corresponding Cartesian coordinates, speed does not enter the equation at all.

Perhaps you could explain the context of your problem and why you think the conversion is not precise enough for what you are trying to achieve. Sound a bit like there might be a moving object or vehicle involved?
 
Filip Larsen said:
Welcome to PF.

Your question does not really make sense to me. The precision of the spherical coordinates of a point are determined by the precision of the corresponding Cartesian coordinates, speed does not enter the equation at all.

Perhaps you could explain the context of your problem and why you think the conversion is not precise enough for what you are trying to achieve. Sound a bit like there might be a moving object or vehicle involved?

Thanks for answering the query, yes a moving object is involved hence the velocity information given. I was told by someone who is convinced that the additional velocity information does make a difference when doing a conversion to Lat Long Alt. I couldn't really understand the theory behind hence I wanted to seek advice here.
 
In general, if you have the cartesian coordinates of a moving vehicle at any point in time you can, as I said earlier, convert to spherical (or more precisely, geodetic) coordinates without any particular loss of precision.

It is still not clear to me what precisely you (or your friend) are thinking about. Perhaps you are thinking of vehicles that are only slowly (or not at all) accelerating. If you know that the vehicle at time t0 was at position r0 moving with velocity v, then we can approximate the position of the vehicle for times t close to t0 using an expression like rt = r0 + vt (with r and v being vectors). If you now would like a similar expression for the coordinates in spherical (or geodetic) coordinates, your friend is correct that you could transform the velocity as well to get a similar expression. However, since spherical and geodetic coordinates are "curved" while cartesian coordinates are "straight", spherical coordinates from such an expression, would in general be precise for a smaller period of time around t0 compared to the expression in cartesian coordinates. You could also try to get a more precise expression, but again, most non-trivial motions that are simple to describe in straight coordinates are often complicated to describe in curved coordinates, and visa versa.

It may also be that you friend is thinking about the Coriolis force or something similar? If you still want to pursue the mater, I'm afraid you will need to elaborate a bit more.
 
Thread 'Is 'Velocity of Transport' a Recognized Term in English Mechanics Literature?'
Here are two fragments from Banach's monograph in Mechanics I have never seen the term <<velocity of transport>> in English texts. Actually I have never seen this term being named somehow in English. This term has a name in Russian books. I looked through the original Banach's text in Polish and there is a Polish name for this term. It is a little bit surprising that the Polish name differs from the Russian one and also differs from this English translation. My question is: Is there...
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
Back
Top