Does Deutsch's Algorithm Reveal Insights Into Prime Numbers?

  • Thread starter Thread starter Loren Booda
  • Start date Start date
  • Tags Tags
    Algorithm
Loren Booda
Messages
3,108
Reaction score
4
Does Deutsch's quantum algorithm provide any profound classical insight into the density of primes?
 
Physics news on Phys.org
I don't see any relationship at all between Deutsch's algorithm and the prime counting function -- maybe there is more than one Deutsch's algorithm? The one I found was for a quantum computer to tell if a function from {0, 1} to {0, 1} was constant or not, with only one application of the function.
 
My mistake! Shor's algorithm, with a working quantum computer, would have the ability to factor numbers exponentially faster than classical computers. Present encryption, reliant upon prime numbers, would then become obsolete. Mathematically, could quantum mechanics and Shor's algorithm together facilitate a formulaic shortcut for the counting of primes?
 
Assuming that the Generalized Riemann hypothesis is true then the Miller-Rabin primality test has a runtime of O(log(n)4).

I don't think very often that Pi(n) is actually calculated by counting up primes, however you look as it that takes up a lot of processing power and storage space very quickly. But hey I don't know much on the subject.
 
Yes you don't check every number less than n for primality if you want to find pi(n) anymore. This would take at least O(n) operations even if you had a constant time primality test.

Much more efficient are variants of the Meissel-Lehmer method, which can find pi(n) in O(n^(2/3)) steps (divided by some terms involving log n) but don't give you a list of primes up to n.

I don't know much about quantum computers, so I can't really say what they'll be able to tell us about the density of primes. I'd expect nothing that a classical computer couldn't do, just with less time.
 
Last edited:
I don't know much about quantum computers, so I can't really say what they'll be able to tell us about the density of primes. I'd expect nothing that a classical computer couldn't do, just with less time.

...that's the impression I've always gotten. The factorization part of Shor's algorithm can be done on a classic computer, but it's when you get to the order-finding problem that Shor's algorithm takes advantage of the quantum technology (I don't remember where I read this, but once I do I'll look it up again and provide some more information).
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top