neurobio said:
In the analogy with the ball, the potential energy is still available (I can let go off the ball and release it upon impact when the ball hits the ground). Is the converted energy from the photon also available, or is it lost?
I fear I may have lead you astray, let me backtrack a little. I didn't mean to imply the analogy could be taken so literally, I was just trying to point to a more familiar example of where energy might appear to have 'gone missing' if not everything is taken into account.
neurobio said:
what is the energy converted into?
Again, don't take my little analogy literally in the case of a photon. There is no conversion of energy from one form to another, it really is 'lost'. On the other hand, the 4D conserved quantity that you can describe a photon with is, as the name suggests, conserved.
Maybe think about it like this, the unit of energy are mass, length^2 per time^2 (usually expressed in Newtons which is Kg m^2 s^{-2}). Now, when it comes down to it, you can always express the difference in energy as perceived by the emitter and observer of a photon by the differences in their rods and clocks, in other words the different length and time calibrations between them. In relativity we are familiar with the concept of length and time dilation, and it is these effects that give rise to redshift.
Put simply, the redshift is effectively the change in frequency of the photon. Think of the emmitter as an oscillator and if there is a relative time dilation between the emmitter and observer then clearly they will disagree about the frequency, and hence energy, of the photon.
The reasons for the time dilation can be either due to relative motion of the two things or gravity, however once you make that statement how much each contribute turns out to depend on how you define co-ordinates, so this is not universal and needs to be done with care. In the end the result is the same though, redshift is due to the difference in rods and clocks between the observer and emmitter. Since the 4D conserved quantity takes these into account it remains unchanged, while the 3D energy does not, hence we see that 'energy is not conserved'.
I hope that helps, let me know if that is just confusing the issue!