Does e^(-ln(x)) Simplify to 1/x?

  • Thread starter Thread starter 1s1
  • Start date Start date
1s1
Messages
20
Reaction score
0

Homework Statement



Is ##e^{-ln(x)}## equal to ##\frac{1}{x}## ?

Homework Equations


The Attempt at a Solution



##e^{-ln(x)} = e^{ln(x^{-1})} = e^{ln(\frac{1}{x})} = \frac{1}{x}## ?

Thanks!
 
Physics news on Phys.org
1s1 said:

Homework Statement



Is ##e^{-ln(x)}## equal to ##\frac{1}{x}## ?

Homework Equations


The Attempt at a Solution



##e^{-ln(x)} = e^{ln(x^{-1})} = e^{ln(\frac{1}{x})} = \frac{1}{x}## ?

Thanks!

Yes that is correct. It's a very common mistake that I see to not apply the log rules before eliminating ##e## and ##ln##.
 
  • Like
Likes 1 person
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top