Does one zero equal its algebraic conjugate?

  • Thread starter Thread starter Gott_ist_tot
  • Start date Start date
  • Tags Tags
    Conjugate Zero
Gott_ist_tot
Messages
52
Reaction score
0
I'm studying abstract algebra and never got the hang of ideas like these. Currently I am trying to grasp:

Show that the splitting field of a quadratic polynomial P(x) = Ax^x + Bx + C, with zeros \alpha and \alpha^{'} is V_\alpha = Q*1 + Q * \alpha. Q is of course the set of rationals.

I know I must be missing something here cause I also have problems trying to figure this out:

Suppose P(x) is a quadratic polynomial with zeroes \alpha and \alpha^{'}, Prove that Q*1 + Q*\alpha = Q*1 + Q*\alpha^{'}

To me the zeros of a polynomial are related numbers but are different and thus should yield different vector spaces. These problems say they are the same vector space. Can anyone expand upon this?

Tex doesn't seem to work in preview but I could not see what was wrong with my notation from your tutorials. If you don't see anything an ascii version will soon follow.

Thanks.
 
Physics news on Phys.org
Ok, tex worked out of preview but is kind of odd. Any alpha (except V sub alpha) should not be a superscript or a subscript. Only the prime in alpha prime is a superscript.
 
i think its because the polynomial is nokly quadratic. i,.e,. when you adjoin all but one rot of a polynomial you get the full root field.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Back
Top