Does Poiseuille's Law apply for vertical motion of fluids down a tube?

AI Thread Summary
The discussion revolves around the application of Poiseuille's Law to the flow rate of glycerol dilutions through a vertical tube. The original poster questioned whether their graph demonstrated an inverse proportion as expected by the law and sought clarification on the relationship between viscosity and glycerol concentration. They received suggestions to explore viscosity calculations to better understand the flow behavior. After making adjustments, the poster reported an improved graph, indicating progress in their investigation. The conversation highlights the complexities of fluid dynamics in vertical motion and the relevance of viscosity in these scenarios.
g9WfI
Messages
13
Reaction score
4
Homework Statement
N/A
Relevant Equations
See below
I investigated the flow rate of differing dilutions of glycerol through an orifice of a vertical tube and obtained the following:
1625006338200.png

I'm looking for a way to quantify these results so looked to Poiseuille's Law;
Screenshot 2021-06-29 at 23.40.27.png

I'm pretty sure my graph does not show inverse proportion? Could anyone advise me as to where I've gone wrong / if there is another law governing this relationship - does Poiseuille's Law apply for the vertical motion of fluids?
 
Physics news on Phys.org
haruspex said:
What makes you think the viscosity will be proportional to the fraction that's glycerol?
See if http://www.met.reading.ac.uk/~sws04cdw/viscosity_calc.html helps.
I see. I've got a much better looking graph now. Thanks a lot :)
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top