hatsoff said:
I'm pretty sure you're either missing something or else you have mistyped it. (*) does not follow from the two contradictions given.
Let's simplify. I know for sure:\neg ( a \rightarrow b ) = a \wedge \neg b
So
( a \rightarrow b ) = \neg a \vee b
If I want to prove ( a \rightarrow b ), then the finding a \wedge \neg b \rightarrow Contradiction will prove it. Please, notice that \neg ( a \rightarrow b ) \rightarrow Contradiction because the two statements are equivalent. As \neg ( a \rightarrow b ) and ( a \rightarrow b ) cannot be true at the same time, the conclusion must be valid.Let's compare its logic to the logic in the case:
Horse said:
The Argument:
a \wedge b \rightarrow c (*)
Its contradictions:
\neg a \wedge b \wedge \neg c \rightarrow Contradiction
a \wedge \neg b \wedge \neg c \rightarrow Contradiction
We notice that the argument is:
a \wedge b \rightarrow c = \neg ( a \rightarrow \neg b ) \rightarrow c
So \neg ( \neg ( a \rightarrow \neg b ) \rightarrow c ) \rightarrow Contradiction must prove it, by the logic above this reply.
Let's write its part differently:
\neg ( \neg ( a \rightarrow \neg b ) \rightarrow c ) = \neg ( a \rightarrow \neg b ) \not \rightarrow c = a \wedge b \not \rightarrow c
So I need to find that:
( a \wedge b \not \rightarrow c ) \rightarrow Contradiction = ( \neg a \vee \neg b \rightarrow \neg c ) \rightarrow Contradiction
Let's call d = \neg a \vee \neg b. So
( d \rightarrow \neg c ) \rightarrow Contradiction
Let's use again:
( a \rightarrow b ) = \neg a \vee b
So it becomes:
( d \rightarrow \neg c ) \rightarrow Contradiction = ( \neg d \vee \neg c ) \rightarrow Contradiction
It is equivalent to:
( a \wedge b \vee \neg c ) \rightarrow Contradiction
Conclusion
My teacher probably had something wrong. It should be right:
( a \wedge b \vee \neg c ) \rightarrow Contradiction