Does the Complex Series Sum of (n!)^3/(3n)! * z^n Diverge?

fauboca
Messages
157
Reaction score
0
\displaystyle\sum_{n = 1}^{\infty}\frac{(n!)^3}{(3n)!}z^n , \ z\in\mathbb{C}

By the ratio test,
<br /> \displaystyle L = \lim_{n\to\infty}\left|\frac{[(n + 1)!]^3 z^{n + 1} (3n)!}{[3(n + 1)]! (n!)^3 z^n}\right| = \lim_{n\to\infty}\left|\frac{z (n + 1)^2}{3}\right| = \infty.

Therefore, the series diverges and there is no radius of convergence.

Correct?
 
Last edited:
Physics news on Phys.org
i don't think your cancellation is quite correct 3(n+1)=3n+3
 
lanedance said:
i don't think your cancellation is quite correct 3(n+1)=3n+3

Thanks, I see the problem.

|z|&lt;27

So R = 27 then
 
Last edited:
can you show how you got there?
 
Last edited:
lanedance said:
can you show how you got there?

\lim_{n\to\infty}\left|\frac{z (n + 1)^3}{(3n + 3)(3n + 2)(3n + 1)}\right|


\Rightarrow \lim_{n\to\infty}|z|\left(\frac{n^3}{27n^3}\right) = \frac{1}{27}|z| &lt; 1 \Rightarrow |z| &lt; 27
 
yeah looks good

you can just just take the result below if you like , rather than carrying the z through though its good to understand why
r = \lim_{n \to \infty} \left|\frac{c_n}{c_{n+1}}\right|
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top