Does this spherical triangle exist?

AI Thread Summary
The discussion centers on solving the 'ant and honey problem' on a spherical bowl, specifically finding the shortest path between two points while adhering to a latitude constraint. The initial hypothesis suggested following the great circle until reaching the latitude limit, then traversing along the latitude before resuming the great circle to the destination. However, it was discovered that this proposed path is merely an approximation of the true shortest route. The solution involves identifying a point on the rim where the great circle tangentially touches, with the shortest path depending on the azimuthal angle of that point. Ultimately, the problem was resolved by determining the correct path based on the geometry of the sphere.
nixed
Messages
35
Reaction score
0
I am trying to solve the 'ant and honey problem on a spherical bowl' to find the shortest route between two points on a sphere when the path is constrained by not being allowed to pass higher than a certain latitude (so interrupting some great circles connecting the two points).

I intuitively think that the shortest route in this case would be to follow the great circle between the two points until the latitude is reached beyond which you cannot go; then walk along the latitude until the great circle is picked up again; then follow it down to the destination. But I have not been able to prove that this is the shortest route. If the following triangle exists then my proposed solution is not the shortest route, but if it doesn't exist then it is the shortest route.

Here is the question: Can a triangle be drawn on the surface of a sphere which has points A, A',B with known lengths A-A' and A'-B and included angle AA'B greater than 90deg for which the following property holds

|AB - AA'| < |A'B|
 
Mathematics news on Phys.org
I think it would be better to stick to one thread for this question.
 
OK thanks ! By the way I discovered that my assumed shortest path is only a close approximation to the true shortest path so the proof I was attempting based on the inequality is invalid!

This is the shortest path when the great circle from A to H is disrupted by a latitude restriction imposed by the missing top of the bowl : Choose the great circle from A which just touches the rim circle tangentially at one point C. If the azimuthal angle ø of point C around the rim from A is < 90° the shortest path from A to H is then 2x the distance A to C along the great circle then C to point ø=90° along the latitude (the rim). If C 's azimuthal angle ø≥ 90° the shortest route is 2x the distance along the great circle connecting A with the point on the rim 90° from A.

Problem solved!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top