durt
- 149
- 0
Given y_n = (2\log{2}+3\log{3}+...+n\log{n})/(n^2\log{n}), the problem is to find \lim_{n \to \infty} y_n. I've found that
y_n \left(n-1+\frac{1}{n+1}\right) \frac{\log{n}}{\log{(n+1)}} = y_{n+1} (n+1) - 1.
So \lim_{n \to \infty} y_n(n-1) = \lim_{n \to \infty} y_{n+1} (n+1) - 1. If I assume \lim_{n \to \infty} y_n \neq 0, separate those limits and solve to get \lim_{n \to \infty} y_n = \frac{1}{2}. How do I show that \lim_{n \to \infty} y_n \neq 0?
y_n \left(n-1+\frac{1}{n+1}\right) \frac{\log{n}}{\log{(n+1)}} = y_{n+1} (n+1) - 1.
So \lim_{n \to \infty} y_n(n-1) = \lim_{n \to \infty} y_{n+1} (n+1) - 1. If I assume \lim_{n \to \infty} y_n \neq 0, separate those limits and solve to get \lim_{n \to \infty} y_n = \frac{1}{2}. How do I show that \lim_{n \to \infty} y_n \neq 0?