Double-slit diffraction with thin film interference

AI Thread Summary
A very thin plastic sheet with an index of refraction of 1.70 is placed over one slit in a double-slit apparatus, causing the center point on the screen to appear dark instead of bright. This indicates a case of destructive interference, requiring a phase shift of λ/2. To achieve this, the thickness of the plastic must be calculated based on the difference in the number of wavelengths of light in air and in the plastic. The wavelength in the plastic is λ/n, and the thickness must be such that the difference in the number of wavelengths in air and plastic equals 1/2. The discussion concludes with the realization of how to calculate the number of wavelengths fitting in the thickness of the plastic.
grouper
Messages
52
Reaction score
0

Homework Statement



A very thin sheet of plastic (n=1.70) covers one slit of a double-slit apparatus illuminated by 630 nm light. The center point on the screen, instead of being a maximum, is dark. What is the (minimum) thickness of the plastic?

Homework Equations



Constructive interference d*sinθ=m*λ where m=0,1,2,3,...

Destructive interference d*sinθ=(m+1/2)*λ where m=1,2,3,...

c=λ*f

c=c0/n

λ1*n1=λ2*n2

The Attempt at a Solution



Obviously this is a case of destructive interference so the sheet of plastic needs to shift the phase of that wave by λ/2. I am unsure of how to determine the thickness of the plastic necessary to make that happen though.
 
Physics news on Phys.org
The thickness, t, of the plastic must be such that there is an extra 1/2 a wavelength in the plastic, compared to the number of wavelengths in the same thickness of air.

Index of refraction for air is ≈ 1 .
 
As stated above in my attempted solutions, I understand that the wavelength needs to be shifted by λ/2 but I don't understand how to use this to find out how thick the glass needs to be to shift the wave by that amount.
 
If λ is the wavelength in air, then λ/n is the wavelength in the plastic, right?

How many waves of wavelength, λ/n, will fit in a layer of plastic having a thickness, t ?

How many waves of wavelength, λ, will fit in a layer of air having a thickness, t ?

The difference the the above two quantities must be 1/2.
 
number of waves in plastic: = t/(λ/η) = ηt/λ,

number of waves in: = ?
 
Ok, thanks, that helped a lot. For some reason I was blanking on how to get the number of waves in the thickness of the plastic, but I figured it out.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top