Doubt reagarding denseness of a set in (0,1)

  • Thread starter Thread starter ashok vardhan
  • Start date Start date
  • Tags Tags
    Doubt Set
ashok vardhan
Messages
18
Reaction score
0
I have been doing a basic math course on Real analysis...I encountered with a problem which follows as" Prove that na(mod1) is dense in (0,1)..where a is an Irrational number , n>=1...

I tried to prove it using only basic principles...first of all i proved that above defined sequence is infinte..and also it is bounded...so by Bolzano-Weierstrass theorem it has a limit point in (0,1)..but to prove denseness i need to prove that for any given (a,b) a subset of (0,1) there is atleast one element of the sequence...Iam not getting how to figure out and link that limit point to that interval (a,b)..can anyone help me in this..?...It would be of great help...
 
Physics news on Phys.org
OK, so you have proven that the sequence na has a limit point in (0,1). Now, can you prove that for any \varepsilon>0, there is an element of the sequence such that na<\varepsilon (that is: can you prove that 0 is a limit point).
 
I'll give you a starting hint. Can you show that since a is irrational, that no two points in the sequence na(mod 1) can ever be equal? Now partition the interval [0,1) in subintervals of size 1/K. Can you show one of the subintervals must contain at least two elements of na(mod 1)? It's basically the Pigeon Hole Principle.
 
sir, i tried to figure out that 0 is a limit point...but i am stuck with proving the fact that you mentioned i.e for any ε>0,there is ..an element of the sequence such that na<ε..I am able to understand why it should happen..but cannot prove it rigirously..Can u please help me out why such an integer "n" should exist..?...
 
ashok vardhan said:
sir, i tried to figure out that 0 is a limit point...but i am stuck with proving the fact that you mentioned i.e for any ε>0,there is ..an element of the sequence such that na<ε..I am able to understand why it should happen..but cannot prove it rigirously..Can u please help me out why such an integer "n" should exist..?...

Pick N large enough that 1/N<ε. Divide [0,1] into N equal parts. Can you argue that at least one of the parts contains at least two numbers of the form na(mod 1)?
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top