vilhelm
- 37
- 0
The problem statement
find all complex numbers z, that satisfies the equation
e^{z}\; =\; -1\; -i
The attempt at a solution
z=a+bi
e^{\left( a+bi \right)}\; =\; e^{a}\cdot e^{bi}\; =\; e^{a}\left( \cos b\; +\; i\; \sin b \right)
I seek
\begin{cases}e^a cos(b)=-1 \\ e^a sin(b)=-1 \end{cases}
So, what b satisfies sin(b) = cos(b) ?
In the unit circle, I see: b=\frac{\pi }{4}+\pi n as that angle for b. b is done.
e^{a}\cos \left( \frac{\pi }{4} \right)=-1
e^{a}=-\sqrt{2}
a=\ln \left( -\sqrt{2} \right)
\Rightarrow z=\ln \left( -\sqrt{2} \right)+i\left( \frac{\pi }{4}+\pi n \right)
find all complex numbers z, that satisfies the equation
e^{z}\; =\; -1\; -i
The attempt at a solution
z=a+bi
e^{\left( a+bi \right)}\; =\; e^{a}\cdot e^{bi}\; =\; e^{a}\left( \cos b\; +\; i\; \sin b \right)
I seek
\begin{cases}e^a cos(b)=-1 \\ e^a sin(b)=-1 \end{cases}
So, what b satisfies sin(b) = cos(b) ?
In the unit circle, I see: b=\frac{\pi }{4}+\pi n as that angle for b. b is done.
e^{a}\cos \left( \frac{\pi }{4} \right)=-1
e^{a}=-\sqrt{2}
a=\ln \left( -\sqrt{2} \right)
\Rightarrow z=\ln \left( -\sqrt{2} \right)+i\left( \frac{\pi }{4}+\pi n \right)