Exploring the Solution to a Harmonic Oscillator Problem

rhysticlight
Messages
3
Reaction score
0
I am not really asking how to solve the problem but just for explanation of what I know to be true from the problems solution. Basically the original problem statement is this:

A particle in a harmonic oscillator potential starts out in the state
|psi(x,0)>=1/5 * [3|0> + 4|1>] and it asks to find the expectation value of position <x>.

Now the way I approached the problem was to first find |psi(x,t)> by simply "tacking on" the time dependent exponential terms and then expressing x through the ladder operators a+ and a-.

What I am wondering is when I, for example, apply the raising operator a+ to the state |0>*exp(-i*E0*t/h) does the function become |1>*exp(-i*E0*t/h) rather than |1>*exp(-i*E1*t/h) (i.e. why does the energy term in the time dependent part not change?)

Thanks!
 
Physics news on Phys.org


rhysticlight said:
I am not really asking how to solve the problem but just for explanation of what I know to be true from the problems solution. Basically the original problem statement is this:

A particle in a harmonic oscillator potential starts out in the state
|psi(x,0)>=1/5 * [3|0> + 4|1>] and it asks to find the expectation value of position <x>.

Now the way I approached the problem was to first find |psi(x,t)> by simply "tacking on" the time dependent exponential terms and then expressing x through the ladder operators a+ and a-.

What I am wondering is when I, for example, apply the raising operator a+ to the state |0>*exp(-i*E0*t/h) does the function become |1>*exp(-i*E0*t/h) rather than |1>*exp(-i*E1*t/h) (i.e. why does the energy term in the time dependent part not change?)

Thanks!

The energy terms E1 and E0 are constants, namely multiples of \hbar\omega. Put in these values, if you wish, before you operate with the ladder operators and see what happens.
 


Ah o.k. I see now, thanks!
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top