xxChrisxx said:
Did you mean 2nd order?
You've got me thinking now... :P
Why would it be 3rd order regardless of cylinders?
I worked on a NASCAR V8 engine quite a while ago, measuring the crankshaft twist (angular oscillation at the front of the crank). I was expecting 4/rev, having 8 cylinders, and it did show up. But the 3/rev was much larger.
There are two sources of torque acting on the crank, from each cylinder: 1) pressure acting on the piston (gas pressure torque), and 2) the force necessary to accelerate the piston up and down the cylinder (inertia torque). The gas pressure torque repeats once per two rev's, so it has frequencies that are multiples of 1/2 order. The inertia torque repeats once per rev, so it has frequencies that are multiples of 1st order.
If the crank motion from the torque acting on it were equal for every cylinder, a V8's four equally-spaced firing events per rev will make all the oscillations cancel, except for multiples of 4/rev. But that actually only happens if the crankshaft is rigid. If the frequency of the pulses is near a crank torsional mode frequency, the crank is twisting, and the twist from some cylinders is greater than for others (the front cylinders are further from the flywheel, so the twist from them is larger). Many orders that would otherwise cancel no longer do, so ANY order could excite torsion if it's at the right frequency.
If you calculate the frequencies and amplitudes of all the orders of torque acting on the crank, 3rd order inertia torque is one that is large enough and reaches a high enough frequency to excite the first crank torsion mode frequency (around 300 Hz, which 3rd order hits at 6000 RPM). Other orders do show up in the vibration, but they are not typically as big.
Of course, after I finished the project, I looked in Taylor's book on IC engines, and it showed a graph of a 1960's Ford V8 race engine, and it showed torsion peaks, at increasing speeds, from 5th order, then 4th order, then 3rd order. Of course 3rd order was the biggest, and now I knew why...