Effect on rolling motion after an inelastic collision.

AI Thread Summary
The discussion revolves around the dynamics of a sphere rolling at a constant velocity that undergoes an inelastic collision with a wall. After the collision, the sphere's linear velocity changes, while its angular velocity remains the same initially, leading to a need for friction to create a torque that alters the angular velocity. The participants explore the effects of friction and torque on the sphere's motion, emphasizing the importance of calculating angular acceleration and its impact on linear velocity. A scenario is also proposed where the wall is shorter than the sphere, raising questions about the frictional interaction and its effects on the sphere's motion. The conversation highlights the complexities of motion post-collision and the role of friction in restoring pure rolling.
nerdvana101
Messages
8
Reaction score
0
Hi,

I have a problem which I can't figure out.:confused:

Let us take a sphere which is rolling purely at a constant velocity vo.
Now, if the sphere were to collide inelastically with a wall, with coeff. of restitution = e.
Then what is the time after which the sphere starts pure rolling again?
Given coeff, friction = μ

I went about by considering that after the collision, the particle will have evo velocity, but the same angular velocity ω=vo/r.

Now, since the sphere is translating, the angular velocity is in the opp. direction. So the frictional force will cause a torque to change ω.

So, if the body was initially moving rightwards, with clockwise ω, it's new velocity will be leftwards, but ω will remain clockwise. So the frictional force must act towards right to apply a counter-clockwise torque.

After this, I couldn't figure out which way to go.:rolleyes:

Any help appreciated.!:approve:
 
Physics news on Phys.org
nerdvana101 said:
I went about by considering that after the collision, the particle will have evo velocity, but the same angular velocity ω=vo/r.
Usually the collision will change the angular velocity as well. If the ball rolls the force of the wall on the ball is not horizontal. It is slightly upwards generating a torque.

But can you assume zero friction with the wall to avoid that. Then the ball will slide on the ground until the friction makes it roll. Use the torque from friction and moment of inertia to find the angular acceleration. Keep in mind that the friction also reduces the velocity, while it changes the angular velocity.
 
So, taking the torque about the COM and then finding the angular acceleration, what happens to the linear velocity? I think the friction force will act in it's opposite direction and stop it from sliding.
so that a = f/m.

Then, I cud equate it as -

v-at = r(ω - αt)
and get the time?
 
thx, just worked it out. got the right answer.

Anyway, I was thinking that if the wall were shorter than the sphere itself? let's say that the wall has a height h, where h < r, i.e., the wall has a height less than that of the height of the center of the sphere. SO, only a corner of that wall will touch that sphere.
Let the friction of the wall also be high enough that it resists slipping of the sphere upon contact. Then what?
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top