PhysicsForums
- 8
- 0
Homework Statement
I need to show: S^2 \left( \frac{1}{\sqrt{2}} \left[ \alpha(1) \beta(2) - \beta(1) \alpha(2) \right] \right) has an eigenvalue of zero.
The attempt at a solution
S_1^2 \left( \frac{1}{\sqrt{2}} \left[ \alpha(1) \beta(2) - \beta(1) \alpha(2) \right] \right)=\hbar^2 \frac{3}{4} \left( \frac{1}{\sqrt{2}} \left[ \alpha(1) \beta(2) - \beta(1) \alpha(2) \right] \right)
S_2^2 \left( \frac{1}{\sqrt{2}} \left[ \alpha(1) \beta(2) - \beta(1) \alpha(2) \right] \right)=\hbar^2 \frac{3}{4} \left( \frac{1}{\sqrt{2}} \left[ \alpha(1) \beta(2) - \beta(1) \alpha(2) \right] \right)
2S_{1z}S_{2z} \left( \frac{1}{\sqrt{2}} \left[ \alpha(1) \beta(2) - \beta(1) \alpha(2) \right] \right)=-\hbar^2 \frac{1}{2} \left( \frac{1}{\sqrt{2}} \left[ \alpha(1) \beta(2) - \beta(1) \alpha(2) \right] \right)
\left( S_{1+}S_{2+}+S_{1-}S_{2-} \right) \left( \frac{1}{\sqrt{2}} \left[ \alpha(1) \beta(2) - \beta(1) \alpha(2) \right] \right)=0
As you can see, these values do not add up to zero. \hbar^2 \frac{3}{4} + \hbar^2 \frac{3}{4} -\hbar^2 \frac{1}{2} =2 \hbar^2
I am not sure where my calculations went off, if you would like to see more work, please ask.
I need to show: S^2 \left( \frac{1}{\sqrt{2}} \left[ \alpha(1) \beta(2) - \beta(1) \alpha(2) \right] \right) has an eigenvalue of zero.
The attempt at a solution
S_1^2 \left( \frac{1}{\sqrt{2}} \left[ \alpha(1) \beta(2) - \beta(1) \alpha(2) \right] \right)=\hbar^2 \frac{3}{4} \left( \frac{1}{\sqrt{2}} \left[ \alpha(1) \beta(2) - \beta(1) \alpha(2) \right] \right)
S_2^2 \left( \frac{1}{\sqrt{2}} \left[ \alpha(1) \beta(2) - \beta(1) \alpha(2) \right] \right)=\hbar^2 \frac{3}{4} \left( \frac{1}{\sqrt{2}} \left[ \alpha(1) \beta(2) - \beta(1) \alpha(2) \right] \right)
2S_{1z}S_{2z} \left( \frac{1}{\sqrt{2}} \left[ \alpha(1) \beta(2) - \beta(1) \alpha(2) \right] \right)=-\hbar^2 \frac{1}{2} \left( \frac{1}{\sqrt{2}} \left[ \alpha(1) \beta(2) - \beta(1) \alpha(2) \right] \right)
\left( S_{1+}S_{2+}+S_{1-}S_{2-} \right) \left( \frac{1}{\sqrt{2}} \left[ \alpha(1) \beta(2) - \beta(1) \alpha(2) \right] \right)=0
As you can see, these values do not add up to zero. \hbar^2 \frac{3}{4} + \hbar^2 \frac{3}{4} -\hbar^2 \frac{1}{2} =2 \hbar^2
I am not sure where my calculations went off, if you would like to see more work, please ask.