unscientific
- 1,728
- 13
Homework Statement
Part (a): Find the eigenvalues and eigenvectors of matrix A:
<br /> \left( <br /> \begin{array}{cc} <br /> 2 & 0 & -1\\ <br /> 0 & 2 & -1\\<br /> -1 & -1 & 3 \\<br /> \end{array} <br /> \right)<br />Part(b): Find the eigenvalues and eigenvectors of matrix ##B = e^{3A} + 5I##.
Homework Equations
The Attempt at a Solution
Part (a)
\lambda = 1, 2, 4
u_1 = \frac{1}{\sqrt3}(1,1,1)
u_2 = \frac{1}{\sqrt 2}(1,-1,0)
u_3 = \frac{1}{\sqrt 5}(1,1,-2)]
Part(b)
Realize A is a hermitian matrix.
Diagonalize A:
A'=<br /> \left( <br /> \begin{array}{cc} <br /> 1 & 0 & 0\\ <br /> 0 & 2 & 0\\<br /> 0 & 0 & 4 \\<br /> \end{array} <br /> \right)<br />
B' = exp(3A') + 5I
Therefore, eigenvalues of ##B'= e+5, e^2 + 5, e^4+5##. Also, eigenvalues of B = B'.
How do I find the eigenvectors of B? Do I need to undiagonalize B' using the transformation matrix made up of eigenvectors of A?