Shackleford
- 1,649
- 2
Eigenvalues of A* and A
Show that the eigenvalues of A* are conjugates of the eigenvalues of A.
I know this is an easy problem, but I've just been spinning my wheels manipulating the equations with the transpose, conjugate, and adjoint properties.
<br /> \begin{align}<br /> <br /> A^* = \bar{A}^T\\<br /> <br /> A\vec{x} = \lambda\vec{x}\\<br /> <br /> A^*\vec{x} = \bar\lambda\vec{x}\\<br /> \end{align}<br /> <br />
Show that the eigenvalues of A* are conjugates of the eigenvalues of A.
I know this is an easy problem, but I've just been spinning my wheels manipulating the equations with the transpose, conjugate, and adjoint properties.
<br /> \begin{align}<br /> <br /> A^* = \bar{A}^T\\<br /> <br /> A\vec{x} = \lambda\vec{x}\\<br /> <br /> A^*\vec{x} = \bar\lambda\vec{x}\\<br /> \end{align}<br /> <br />
Last edited: