Einstein-Cartan Theory: Dynamical Definition of Spin Tensor

lapo
Messages
4
Reaction score
0
Hi, this is my first message on thi forum :D
I apologize in advance for my english.

I'm doing my thesis work on the theory of relativity of Einstein-Cartan.
I'm following the article of Hehl of 1976; it's title is "General relativity with spin and torsion: Foundations and prospects".

I can't understand the equations (3.7) at page 399:
$$\mu^{\lambda\nu\mu}=-\tau^{\lambda\nu\mu}+\tau^{\nu\mu\lambda}-\tau^{\mu\lambda\nu}\qquad \tau^{\nu\mu\lambda}= \mu^{[\mu\nu]\lambda} $$
Where $\tau$ (spin tensor) e $\mu$ ( pseudo spin tensor) are defined as:
$${\tau_{\lambda}}^{\nu\mu}=\frac{1}{\sqrt{-g}}\frac{\delta\left(\sqrt{-g} \mathcal{L}\right)}{\delta {K_{\mu\nu}}^{\lambda}}\qquad
{\mu_{\lambda}}^{\nu\mu}=\frac{1}{\sqrt{-g}}\frac{\delta\left(\sqrt{-g} \mathcal{L}\right)}{\delta {\Theta_{\mu\nu}}^{\lambda}} $$
Where $\Theta$ and $K$ are respectively torsion and contorsion. For them we have also:
$${K_{\mu\lambda}}^\nu=-{\Theta_{\mu\lambda}}^\nu+{{\Theta_{\lambda}}^{\nu}}_\mu-{\Theta^{\nu}}_{\mu\lambda}\qquad {\Theta_{\lambda\mu}}^\nu={K_{[\mu\lambda]}}^\nu $$
I managed to get the formulas in question in a way that implies the antisymmetry of the spin tensor in the last two indices; but i know that, in general, this is not true. On the other hand, i can't find my mistake; it's look like as all is good.
My reasoning is based on the previous equations and on the chain rule:
\begin{equation*}
\begin{split}
{\mu_{\lambda}}^{\nu\mu}&=\frac{1}{\sqrt{-g}}\frac{\delta\left(\sqrt{-g} \mathcal{L}\right)}{\delta {\Theta_{\mu\nu}}^{\lambda}}\\
&=\frac{1}{\sqrt{-g}}\frac{\partial\left(\sqrt{-g} \mathcal{L}\right)}{\partial {\Theta_{\mu\nu}}^{\lambda}}\\
&=\frac{1}{\sqrt{-g}}\frac{\partial\left(\sqrt{-g} \mathcal{L}\right)}{\partial {K_{\rho\sigma}}^{\epsilon}}\frac{\partial{K_{\rho\sigma}}^{\epsilon}}{\partial {\Theta_{\mu\nu}}^{\lambda}}\\
&={\tau_\epsilon}^{\sigma\rho}\left[-\frac{ \partial{\Theta_{\rho\sigma}}^{\epsilon}}{\partial {\Theta_{\mu\nu}}^{\lambda}}+\frac{\partial {\Theta_{\sigma}}^{\epsilon}\,_\rho}{\partial {\Theta_{\mu\nu}}^{\lambda}}-\frac{\partial {\Theta^{\epsilon}}_{\rho\sigma}}{\partial {\Theta_{\mu\nu}}^{\lambda}}\right]\\
&={\tau_\epsilon}^{\sigma\rho}\left[-\frac{\partial{\Theta_{\rho\sigma}}^{\epsilon}}{\partial {\Theta_{\mu\nu}}^{\lambda}}+g^{\epsilon\gamma}g_{\rho k}\frac{\partial {\Theta_{\sigma\gamma}}^{k}}{\partial {\Theta_{\mu\nu}}^{\lambda}}-g^{\epsilon\gamma}g_{\sigma k}\frac{\partial {\Theta_{\gamma\rho}}^{k}}{\partial {\Theta_{\mu\nu}}^{\lambda}}\right]\\
\end{split}
\end{equation*}
So:
\begin{equation*}{\mu_{\lambda}}^{\nu\mu}=-{\tau_{\lambda}}^{\nu\mu}+{\tau^{\nu\mu}}_\lambda-{\tau^\mu}_{\lambda}\,^\nu
\end{equation*}
Which is (Formula 1)
\begin{equation*}
\mu^{\lambda\nu\mu}=-\tau^{\lambda\nu\mu}+\tau^{\nu\mu\lambda}-\tau^{\mu\lambda\nu}
\end{equation*}
Up to this point all it's ok. The problem is that if i remember the definition of the spin tensor and follow a similar reasoning:
\begin{equation*}
\begin{split}
{\tau_{\lambda}}^{\nu\mu}&={\mu_\epsilon}^{\sigma\rho}\frac{\partial {\Theta_{\rho\sigma}}^\epsilon}{\partial {K_{\mu\nu}}^\lambda}\\
&={\mu_\epsilon}^{\sigma\rho}\frac{\partial K_{[\sigma\rho]}\,^\epsilon }{\partial {K_{\mu\nu}}^\lambda}\\
&={\mu_\epsilon}^{\sigma\rho}\frac{1}{2}\frac{\partial }{\partial {K_{\mu\nu}}^\lambda}\left[ {K_{\sigma\rho}}^\epsilon-{K_{\rho\sigma}}^\epsilon\right]
\end{split}
\end{equation*}
we find the following result:
\begin{equation*}
\tau^{\lambda\nu\mu}= \mu^{\lambda[\mu\nu]}
\end{equation*}
Where is the mistake?
Following the previous reasoning and using the antisymmetry of the spin tensor in the last two indices in the formula (1) we arrive easily to:
\begin{equation*}
\tau^{\lambda\nu\mu}= \mu^{[\mu\nu]\lambda}
\end{equation*}
Therefore we have demonstrated the antisymmetry of the spin tensor in the first two indices. Using this asymmetry another time in the formula (1) we obtain finally:
\begin{equation*}
\tau^{\nu\mu\lambda}= \mu^{[\mu\nu]\lambda}
\end{equation*}
Where is my mistake? And in which way i can demonstrate the last formula without the antisymmetry of $\tau$ in the last two indices?

thank you very much, bye!
 
i haven't yet reach the right answer..
 
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
Back
Top