Einstein-Cartan Theory: Dynamical Definition of Spin Tensor

lapo
Messages
4
Reaction score
0
Hi, this is my first message on thi forum :D
I apologize in advance for my english.

I'm doing my thesis work on the theory of relativity of Einstein-Cartan.
I'm following the article of Hehl of 1976; it's title is "General relativity with spin and torsion: Foundations and prospects".

I can't understand the equations (3.7) at page 399:
$$\mu^{\lambda\nu\mu}=-\tau^{\lambda\nu\mu}+\tau^{\nu\mu\lambda}-\tau^{\mu\lambda\nu}\qquad \tau^{\nu\mu\lambda}= \mu^{[\mu\nu]\lambda} $$
Where $\tau$ (spin tensor) e $\mu$ ( pseudo spin tensor) are defined as:
$${\tau_{\lambda}}^{\nu\mu}=\frac{1}{\sqrt{-g}}\frac{\delta\left(\sqrt{-g} \mathcal{L}\right)}{\delta {K_{\mu\nu}}^{\lambda}}\qquad
{\mu_{\lambda}}^{\nu\mu}=\frac{1}{\sqrt{-g}}\frac{\delta\left(\sqrt{-g} \mathcal{L}\right)}{\delta {\Theta_{\mu\nu}}^{\lambda}} $$
Where $\Theta$ and $K$ are respectively torsion and contorsion. For them we have also:
$${K_{\mu\lambda}}^\nu=-{\Theta_{\mu\lambda}}^\nu+{{\Theta_{\lambda}}^{\nu}}_\mu-{\Theta^{\nu}}_{\mu\lambda}\qquad {\Theta_{\lambda\mu}}^\nu={K_{[\mu\lambda]}}^\nu $$
I managed to get the formulas in question in a way that implies the antisymmetry of the spin tensor in the last two indices; but i know that, in general, this is not true. On the other hand, i can't find my mistake; it's look like as all is good.
My reasoning is based on the previous equations and on the chain rule:
\begin{equation*}
\begin{split}
{\mu_{\lambda}}^{\nu\mu}&=\frac{1}{\sqrt{-g}}\frac{\delta\left(\sqrt{-g} \mathcal{L}\right)}{\delta {\Theta_{\mu\nu}}^{\lambda}}\\
&=\frac{1}{\sqrt{-g}}\frac{\partial\left(\sqrt{-g} \mathcal{L}\right)}{\partial {\Theta_{\mu\nu}}^{\lambda}}\\
&=\frac{1}{\sqrt{-g}}\frac{\partial\left(\sqrt{-g} \mathcal{L}\right)}{\partial {K_{\rho\sigma}}^{\epsilon}}\frac{\partial{K_{\rho\sigma}}^{\epsilon}}{\partial {\Theta_{\mu\nu}}^{\lambda}}\\
&={\tau_\epsilon}^{\sigma\rho}\left[-\frac{ \partial{\Theta_{\rho\sigma}}^{\epsilon}}{\partial {\Theta_{\mu\nu}}^{\lambda}}+\frac{\partial {\Theta_{\sigma}}^{\epsilon}\,_\rho}{\partial {\Theta_{\mu\nu}}^{\lambda}}-\frac{\partial {\Theta^{\epsilon}}_{\rho\sigma}}{\partial {\Theta_{\mu\nu}}^{\lambda}}\right]\\
&={\tau_\epsilon}^{\sigma\rho}\left[-\frac{\partial{\Theta_{\rho\sigma}}^{\epsilon}}{\partial {\Theta_{\mu\nu}}^{\lambda}}+g^{\epsilon\gamma}g_{\rho k}\frac{\partial {\Theta_{\sigma\gamma}}^{k}}{\partial {\Theta_{\mu\nu}}^{\lambda}}-g^{\epsilon\gamma}g_{\sigma k}\frac{\partial {\Theta_{\gamma\rho}}^{k}}{\partial {\Theta_{\mu\nu}}^{\lambda}}\right]\\
\end{split}
\end{equation*}
So:
\begin{equation*}{\mu_{\lambda}}^{\nu\mu}=-{\tau_{\lambda}}^{\nu\mu}+{\tau^{\nu\mu}}_\lambda-{\tau^\mu}_{\lambda}\,^\nu
\end{equation*}
Which is (Formula 1)
\begin{equation*}
\mu^{\lambda\nu\mu}=-\tau^{\lambda\nu\mu}+\tau^{\nu\mu\lambda}-\tau^{\mu\lambda\nu}
\end{equation*}
Up to this point all it's ok. The problem is that if i remember the definition of the spin tensor and follow a similar reasoning:
\begin{equation*}
\begin{split}
{\tau_{\lambda}}^{\nu\mu}&={\mu_\epsilon}^{\sigma\rho}\frac{\partial {\Theta_{\rho\sigma}}^\epsilon}{\partial {K_{\mu\nu}}^\lambda}\\
&={\mu_\epsilon}^{\sigma\rho}\frac{\partial K_{[\sigma\rho]}\,^\epsilon }{\partial {K_{\mu\nu}}^\lambda}\\
&={\mu_\epsilon}^{\sigma\rho}\frac{1}{2}\frac{\partial }{\partial {K_{\mu\nu}}^\lambda}\left[ {K_{\sigma\rho}}^\epsilon-{K_{\rho\sigma}}^\epsilon\right]
\end{split}
\end{equation*}
we find the following result:
\begin{equation*}
\tau^{\lambda\nu\mu}= \mu^{\lambda[\mu\nu]}
\end{equation*}
Where is the mistake?
Following the previous reasoning and using the antisymmetry of the spin tensor in the last two indices in the formula (1) we arrive easily to:
\begin{equation*}
\tau^{\lambda\nu\mu}= \mu^{[\mu\nu]\lambda}
\end{equation*}
Therefore we have demonstrated the antisymmetry of the spin tensor in the first two indices. Using this asymmetry another time in the formula (1) we obtain finally:
\begin{equation*}
\tau^{\nu\mu\lambda}= \mu^{[\mu\nu]\lambda}
\end{equation*}
Where is my mistake? And in which way i can demonstrate the last formula without the antisymmetry of $\tau$ in the last two indices?

thank you very much, bye!
 
i haven't yet reach the right answer..
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top