Electric field of "half" an infinite charged sheet

BearY
Messages
53
Reaction score
8

Homework Statement


A charged sheet with charge density ##\sigma## is described by ##-\infty<x<0,-\infty<y<\infty, z = 0##. Find the electric field at ##(0,0,z)##.

Homework Equations


Electric field of continuous density charged body from the Coulomb law:
$$E = \frac{1}{4\pi \epsilon_0}\int_V\frac{\vec{r} − \vec{r_0}}{|\vec{r} − \vec{r_0}|^3}\rho(\vec{r}')dV'$$

The Attempt at a Solution


First I tried to do a double integral but handling symmetry of x y at the same time seems very messy. So I did integral on y dimension first. It is infinite line of charge with density ##\sigma dx##, and the answer is $$\frac{\sigma dx}{2\pi \epsilon_0\sqrt{x^2+z^2}}$$
Then integrate the answer from ##x=-\infty## to ##x=0##.
What I did is integrate z component and x component separately, and do vector addition and take mod in the very end.
So I ended up with 2 integrals:
x component$$\frac{\sigma}{2\pi \epsilon_0}\int_{-\infty}^{0}\frac{x}{x^2+z^2}dx$$
and z component$$\frac{\sigma}{2\pi \epsilon_0}\int_{-\infty}^{0}\frac{z}{x^2+z^2}dx$$
These integral look reasonably simple, but the result I get is strange, so I guess I am wrong at some point. The first one is ##\frac{ln(x^2+z^2)}{2}##, and the definite integral gives intinity. The second one is ##arctan(\frac{x}{z})## gives ##\frac{\pi}{2}##.
I think this kind of question should have a finite answer and the answer given is $$\frac{\sigma}{4\epsilon_0}$$ which is finite. What went wrong?
 
  • Like
Likes Delta2
Physics news on Phys.org
Actually never mind, the question asked for z component only, I can't believe I overlooked it and spent 2 hours on this.
 
  • Like
Likes Charles Link and Delta2
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top