Electric Heating Coil: Potential Difference in 3.5 mins

FlipStyle1308
Messages
264
Reaction score
0
An electric heating coil is immersed in 4.2 kg of water at 22°C. The coil, which has a resistance of 260 Ω, warms the water to 33°C in 3.5 mins. What is the potential difference at which the coil operates?

I was looking through the chapter, and did not see any equations that I can use that involve temperatures, but does this problem involve the equation q(t) = CE[1-e^(-t/T)]?
 
Physics news on Phys.org
What is the quantity of heat absorbed by water? Heat absorbed by water is heat dissipated by heater. Once you know the wattage and resistance of heater, calculate the voltage.
 
Here's what I did, and I got my answer wrong, but see if you can catch my mistake:

C = Q/mT = 4186 J/(kgK) = Q/(4.2 kg)(306.15 K - 295.15 K) => Q = 193,393.2 C
I = Q/t = 193,393.2 C / 210 s = 920.92 A
V = IR = (920.92 A)(260 ohm) = 239,439.2 V

I thought my overall answer seemed somewhat high, and I was right. Are any of the equations I used incorrect?
 
Last edited:
Bump! Is anyone able to determine what I am doing wrong?
 
The solution for this problem should not involve capacitanc, charges etc.
It's much simpler.
First you calculate the amount of heat the water absorbed.
Heat=specific heat * mass * temperature difference
The heat is the energy that the resistor transferred to the water, in a certain amount of time. Hence the power is
Power = energy / time
now use the formula
(Voltage)^2 / resistance = power
and that's it.
 
Awesome, thank you so much!
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top