Electric potential, solution to Laplace's Eq.

nsatya
Messages
25
Reaction score
0

Homework Statement



Prove that the potential outside of any radially symmetric charge distribution of total charge q, given by,

V = q/(4*pi*epsilon_0*r)

is a solution to Laplace's Equation.

Hint: Only a masochist would solve this problem by solving Laplace's Equation. It is much easier to demonstrate that this solution is a solution to Laplace's equation.



Homework Equations





The Attempt at a Solution



I first tried to plug V into Laplace's Equation del^2 V = 0. Since V only depends on r in this case, I thought I could just take the 2nd derivative of V and show that it is 0. I got to this point but could not go much further with it. Any help would be appreciated.
 
Physics news on Phys.org
Hint: what is the Laplacian of any scalar function f in spherical coordinates? Is the radial component really just \frac{\partial^2 f}{\partial r^2} ? :wink:
 
To solve this, I first used the units to work out that a= m* a/m, i.e. t=z/λ. This would allow you to determine the time duration within an interval section by section and then add this to the previous ones to obtain the age of the respective layer. However, this would require a constant thickness per year for each interval. However, since this is most likely not the case, my next consideration was that the age must be the integral of a 1/λ(z) function, which I cannot model.
Back
Top