ngkamsengpeter
- 193
- 0
How to express electromagnetic field tensor in curvilinear coordinates, that is given a curvilinear coordinates (t,\alpha,\beta,\gamma)with metric tensor as follows:
<br /> n_{\mu \nu }= <br /> \left[ \begin{array}{cccc}h_0^2& 0 & 0 & 0 \\ 0 & -h_1^2 & 0 & 0 \\ 0 & 0 & -h_2^2 & 0 \\ 0 & 0 & 0 & -h_3^2 \end{array} \right]<br />
How do we express electromagnetic field tensor F_{\mu \nu} in terms of E_\alpha , E_\beta , E_\gamma , B_\alpha , B_\beta , B_\gamma
I found in the internet that the F_{\mu \nu} is given by:
<br /> F_{\mu \nu }= <br /> \left[ \begin{array}{cccc} 0 & -\frac{E_{\alpha}}{h_0 h_1} & -\frac{E_{\beta}}{h_0 h_2} & -\frac{E_{\gamma}}{h_0 h_3} \\ \frac{E_{\alpha}}{h_0 h_1} & 0 & \frac{B_{\gamma}}{h_1 h_2} &-\frac{B_{\beta}}{h_3 h_1} \\\frac{E_{\beta}}{h_0 h_2} & -\frac{B_{\gamma}}{h_1 h_2} & 0 & \frac{B_{\alpha}}{h_2 h_3} \\\frac{E_{\gamma}}{h_0 h_3} & \frac{B_{\beta}}{h_3 h_1} & -\frac{B_{\alpha}}{h_2 h_3}& 0 \end{array} \right]<br />
Is it correct and how to derive it?
Thanks.
<br /> n_{\mu \nu }= <br /> \left[ \begin{array}{cccc}h_0^2& 0 & 0 & 0 \\ 0 & -h_1^2 & 0 & 0 \\ 0 & 0 & -h_2^2 & 0 \\ 0 & 0 & 0 & -h_3^2 \end{array} \right]<br />
How do we express electromagnetic field tensor F_{\mu \nu} in terms of E_\alpha , E_\beta , E_\gamma , B_\alpha , B_\beta , B_\gamma
I found in the internet that the F_{\mu \nu} is given by:
<br /> F_{\mu \nu }= <br /> \left[ \begin{array}{cccc} 0 & -\frac{E_{\alpha}}{h_0 h_1} & -\frac{E_{\beta}}{h_0 h_2} & -\frac{E_{\gamma}}{h_0 h_3} \\ \frac{E_{\alpha}}{h_0 h_1} & 0 & \frac{B_{\gamma}}{h_1 h_2} &-\frac{B_{\beta}}{h_3 h_1} \\\frac{E_{\beta}}{h_0 h_2} & -\frac{B_{\gamma}}{h_1 h_2} & 0 & \frac{B_{\alpha}}{h_2 h_3} \\\frac{E_{\gamma}}{h_0 h_3} & \frac{B_{\beta}}{h_3 h_1} & -\frac{B_{\alpha}}{h_2 h_3}& 0 \end{array} \right]<br />
Is it correct and how to derive it?
Thanks.
Last edited: