Energy Balance on heat exchanger

AI Thread Summary
An energy balance is needed for a heat exchanger heating a 90% methanol and 10% water mixture from 21°C to 261°C using high-pressure steam at 31 bar. The steam condenses at the same pressure, making the calculation of steam required straightforward with m = Q/ΔHv. The challenge lies in determining the correct specific heat capacity (Cp) for the mixture during heating, as the typical value for water does not apply at the higher temperature. The heat of vaporization for steam at 31 bar is 1785 kJ/kg, and the boiling point of water at this pressure is 236°C. A proper approach to finding Cp is necessary to accurately calculate the total energy required for the heating process.
thelorax
Messages
1
Reaction score
0
I need to do an energy balance on a heat exchanger where an aziotropic mixture of 90% methanol and 10% water at 21°C is being heated to 261°C. The heat source is high pressure saturated steam at 31 bar and it is assumed that the steam leaves as condensate at the same pressure (31bar).

Calculating the steam required at the end is relatively straightforward using m = Q/ΔHv, as the steam merely goes from saturated vapour to saturated liquid.

However, calculating the actual heat required to raise the temperature of the methanol feed solution from 21°C to 261°C at 2.2 bar is where I get lost.

In this calculation we have to take into account the amount of energy gained m*Cp*dT and the amount of energy required to vaporize the water m*ΔHv. Which isn't too hard, except I don't know which value of Cp to use. Normally I would use Cp = 4.18kJ/kg K and calculate Q = m*(4.18)*(261-21) + m*ΔHv but this Cp value would only apply for water at 21°C, not steam at 261°C, which would have a different Cp.

The other option would be to use Q = m*∫CpdT + m*ΔHv, except I don't have an equation for Cp in terms of T.

I guess my question is:

What value(s) of Cp do I use when calculating the the total energy required to heat a mixture of 90% Methanol/10%water solution from 21°C to 261°C?

There is probably a very straightforward explanation for this and I would very much appreciate it if someone could please explain it to me.

Thank you for your time.

TheLorax
 
Engineering news on Phys.org
You didn't mention the big factor, the heat of vaporization of the steam.

At 31 Bar, the boiling point of water is 236C, and the heat of vaporization is 1785 kJ/kg
 
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...

Similar threads

Back
Top