Energy levels of a 3 dimensional infinite square well

bobred
Messages
170
Reaction score
0

Homework Statement



Calculate the wavelength of the electromagnetic radiation emitted when
an electron makes a transition from the third energy level, E3, to the lowest energy level, E1.

Homework Equations



E_n = \frac{\left (n_{x}^{2}+n_{y}^{2}+n_{z}^{2} \right) \pi^{2} \hbar^{2}}{2m_{e}L^{2}}

The Attempt at a Solution


Working out the wavelength is not a problem, my problem comes for the values of n for the third level. For the lowest energy level we have

(1^{2} + 1^{2} + 1^{2})

My question is for the third energy level is it

(1^{2} + 2^{2} + 2^{2})?

Thanks
 
Physics news on Phys.org
Yep, as long as they are referring to E3 and not the third excited state in the problem,(E1 is the ground state the way you asked the question). And for your interest you are dealing with a symmetric box so the energy levels are degenerate. Meaning you could take 2,2,1 1,2,2 or 2,1,2. E2 would be 2,1,1, 1,2,1 or 1,1,2. These are called degenerate eigenstates.
 
Thanks that's what I thought.
 
No problem, I recommend you look into rectangular/square wells to refine your understanding.
 
Last edited:
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top