Again, it generally helps to answer a question if we try to fill out all of the details of what we're trying to do. On the one hand, we can have a thought experiment where we take a single atom that we have prepared in the ground state, perfectly shield it from all external effects, and then hit it with a single photon of precisely the correct energy to excite it to a particular excited state. If we can be sure that the photon has been absorbed, we would say that this atom is now in the definite excited state.
Even this simple thought experiment is a bit oversimplified, since we don't take into account what we call translational degrees of freedom. That is, it is technically possible for some of the energy of the photon to go into the kinetic energy of the entire atom, rather than just exciting the electron. This is actually one of the reasons that spectral lines actually look like rounded peaks instead of sharp lines.
However, more directly important is that a real experiment would not tend to match the perfect setup we described. Experimentalists are exceedingly clever, but individual atoms are hard to work with. So we usually have a gas of atoms and, instead of a single photon, a laser pulse that consists of many thousands of photons at least. Not all of the atoms will be in the ground state (that thermal superposition I have been harping on) and not all of the atoms will be excited by the laser pulse. Nevertheless, the clever experimentalists can combine the probabilities that QM gives us with the parameters like the density of the gas and the intensity of the laser in order to give a statistical description of the system. We can estimate, given the thermal distribution of states, after the laser pulse, what the new distribution of states will be. We might then measure the decays of the system over time, measuring the photon energies and detection times in order to elucidate the spectrum of excitations and their lifetimes.
What I am really getting at is whenever our measurement process involves uncertainties, then we will have to deal with the fact that we can't completely specify the state of the entire system that we are using. So it is far more likely in practice to have to deal with superpositions of states rather than definite states like we would in a perfect thought experiment. This isn't to say that such perfect setups don't have a use in learning the subject. It's quite like learning the laws of motion in examples where we would neglect friction to keep the math simpler. But you should also take away the lesson that the more precise you can make your question, the more precise an answer you will find.