raintrek
- 68
- 0
\hat{x} = \left(\frac{\hbar}{2wm}\right)^{1/2}(\hat{a} + \hat{a}^{+})
\hat{p} = -i\left(\frac{\hbar wm}{2}\right)^{1/2}(\hat{a} - \hat{a}^{+})
I'm trying to demonstrate that
\hat{H} = (\hat{a}^{+}\hat{a} + \frac{1}{2})\hbar w
where \hat{H} = \frac{1}{2m} \hat{p}^{2} + \frac{mw^{2}}{2} \hat{x}^{2}
Given the commutation relation:
[\hat{a},\hat{a}^{+}]=1
However I seem to have too many twos! Here's my attempt:
\hat{H} = \left[\frac{1}{2m} \frac{\hbar wm}{2} (-\hat{a}^{2} + \hat{a}\hat{a}^{+} + \hat{a}^{+}\hat{a} - \hat{a}^{+2})\right] + \left[\frac{mw^{2}}{2} \frac{\hbar}{2wm} (\hat{a}^{2} + \hat{a}\hat{a}^{+} + \hat{a}^{+}\hat{a} + \hat{a}^{+2})\right]
\hat{H} = \frac{\hbar w}{4} (1 + 2\hat{a}^{+}\hat{a})
Can anyone point out where I've gone wrong? Many thanks!
\hat{p} = -i\left(\frac{\hbar wm}{2}\right)^{1/2}(\hat{a} - \hat{a}^{+})
I'm trying to demonstrate that
\hat{H} = (\hat{a}^{+}\hat{a} + \frac{1}{2})\hbar w
where \hat{H} = \frac{1}{2m} \hat{p}^{2} + \frac{mw^{2}}{2} \hat{x}^{2}
Given the commutation relation:
[\hat{a},\hat{a}^{+}]=1
However I seem to have too many twos! Here's my attempt:
\hat{H} = \left[\frac{1}{2m} \frac{\hbar wm}{2} (-\hat{a}^{2} + \hat{a}\hat{a}^{+} + \hat{a}^{+}\hat{a} - \hat{a}^{+2})\right] + \left[\frac{mw^{2}}{2} \frac{\hbar}{2wm} (\hat{a}^{2} + \hat{a}\hat{a}^{+} + \hat{a}^{+}\hat{a} + \hat{a}^{+2})\right]
\hat{H} = \frac{\hbar w}{4} (1 + 2\hat{a}^{+}\hat{a})
Can anyone point out where I've gone wrong? Many thanks!