Entropy and thermodynamics question

AI Thread Summary
Planck's argument about indistinguishable particles addresses Gibbs paradox by correcting state over-counting in thermodynamics. The expression for the number of arrangements, W, of an ideal gas leads to an entropy formula consistent with thermodynamic principles when substituted into Boltzmann's principle. The concept of indistinguishability is crucial, as it affects the counting of microstates in statistical mechanics. Extensivity, defined through homogeneous functions of degree 1, indicates that the system's properties scale with the number of particles. The discussion highlights the complexity of deriving entropy expressions and the need for clarity in understanding these foundational concepts in thermodynamics.
Steve1019
Messages
1
Reaction score
0

Homework Statement



Planck famously argued that if identical particles are considered indistinguishable this would
resolve Gibbs paradox by correcting for over-counting of the states. If the number of
possible arrangements, W, of the N particles of an ideal gas at volume, V, and temperatureT
with constant volume, heat capacity, C, is written as

W = T^(C/k) * V^N
Then:

(a) Show, using Boltzmann's principle (S = k.lnW), that this leads to an expression for the entropy of an ideal classical gas that agrees with thermodynamics.

(b) define what is meant by indistinguishable in the context of plank's solutionand using the notaion of a homogeneous function of degree 1, describe what is meant by extensivity. Show mathematically why Plank's resolution appears to solve the paradox.

The Attempt at a Solution



Now for A it is clear that I should substitute W into the Bolzmann's principle. That is fine. But the resulting expression isn't like anything I have seen. All the entropy equations I have seen are more to do with heat exchange. I'm not entirely sure what I should be doing. Any help would be much appreciated.
 
Physics news on Phys.org
This one definitely belongs in the Advance section!
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top